Please wait a minute...
J4  2012, Vol. 46 Issue (12): 2160-2177    DOI: 10.3785/j.issn.1008-973X.2012.12.005
能源工程     
空间液氦温区机械式制冷技术发展现状及趋势
甘智华1,2, 王博1, 刘东立1, 王任卓1, 张学军1
1. 浙江大学 制冷与低温研究所,浙江 杭州 310027;2. 浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027
Status and development trends of
space mechanical refrigeration system at liquid helium temperature
GAN Zhi-hua1, 2, WANG Bo1, LIU Dong-li1, WANG Ren-zhuo1, ZHANG Xue-jun1
1.Insitute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China;
2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

在介绍已发射和在研液氦温区低温探测器的任务目标和对低温系统性能要求的基础上,分析了空间用液氦温区机械式制冷技术的设计方法和工作性能,并对其发展趋势进行了展望.当前空间液氦温区机械式制冷技术主要采用线性压缩机驱动的预冷型4He和3He J-T节流制冷技术,而对于提供预冷的斯特林制冷机、吸附制冷机和高频脉管制冷机而言,进一步提高制冷效率是实现整机高效运行的关键.

Abstract:

On the basis of an overall introduction of mission objectives and cryogenics system performance requirements of the launched and developing cryogenic detectors at liquid helium temperature, this work analyzed the design methods and working performance of space oriented mechanical cryogenic technologies at liquid helium temperature, and also predicted the future trends of technical development. Space mechanical cryogenic technologies at liquid helium temperature mainly adopt linear compressor to drive pre-cooled 4He and 3He J-T throttling refrigeration technology, but for Stirling cryocoolers, sorption cryocoolers and high-frequency pulse tube cryocoolers which provide precooling, further improvement of refrigeration efficiency is the key to realize the high efficiency of the entire machine.

出版日期: 2012-12-01
:  TK 1  
基金资助:

 国家自然科学基金资助项目(51176165);中央高校基本科研业务费专项基金资助项目(2011QNA4008).

通讯作者: 张学军,男,副教授.     E-mail: xuejzhang@zju.edu.cn
作者简介: 甘智华(1973—),男,教授,博导,主要从事液氦温区低温制冷技术研究.E-mail:gan_zhihua@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

甘智华, 王博, 刘东立, 王任卓, 张学军. 空间液氦温区机械式制冷技术发展现状及趋势[J]. J4, 2012, 46(12): 2160-2177.

GAN Zhi-hua, WANG Bo, LIU Dong-li, WANG Ren-zhuo, ZHANG Xue-jun. Status and development trends of
space mechanical refrigeration system at liquid helium temperature. J4, 2012, 46(12): 2160-2177.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.12.005        http://www.zjujournals.com/eng/CN/Y2012/V46/I12/2160

[1] RADEBAUGH R. Cryocoolers: the state of the art and recent developments [J]. Journal of Physics: Condensed Matter, 2009, 21: 164-219.
[2] RANDO N, LUMB D, BAVDAZ M, et al. Space science applications of cryogenic detectors [J].Nuclear Instruments & Methods in Physics Research A, 2004, 522: 62-68.
[3] ROGALSKI A. Infrared detectors: an overview [J]. Infrared Physics & Technology, 2002, 43: 187-210.
[4] ROGALSKI A. Recent progress in infrared detector technologies [J]. Infrared Physics & Technology, 2011, 54(3): 135-154.
[5] TIMMERHAUS K D, REED R P. Cryogenic engineering: fifty years of progress [M]. New York: Springer Science+Business Media, 2006.
[6] BHATIA R S. Review of spacecraft cryogenic coolers [J].Journal of Spacecraft and Rockets, 2002, 39: 329-346.
[7] COLLAUDIN B, RANDO N. Cryogenics in space: a review of the missions and the technologies [J]. Cryogenics, 2000, 40: 797-819.
[8] TAUBER J A. The Planck mission [J]. Advances in Space Research, 2004, 34: 491-496.
[9] MANDOLESI M, VILLA F, VALENZIANO L. The Planck satellite[J]. Advances in Space Research, 2002, 30: 2123-2128.
[10] TAUBER J A. The COBRAS/SAMBA mission [J]. Lecture Notes in Physics, 1995, 455: 243-250.
[11] BERSANELLI M, BOUCHET F R, EFSTATHIOU G, et al. COBRAS/SAMBA: report on the phase A study [R], Milano, Italy: University of Milano, 1996.
[12] VALENZIANO L. The low frequency instrument onboard the Planck satellite: characteristics and performance [J]. New Astronomy Reviews, 2007, 51: 287-297.
[13] VILLA F, MANDOLESI N, BERSANELLI M, et al. The low frequency instrument of the Planck mission [C]∥ AIP Conferences Proceedings 609. New York: American Institute of Physics, 2002: 144-149.
[14] BHANDARI P, PRINA M, BOWMAN R J, et al. Sorption coolers using a continuous cycle to produce 20 K for the Planck flight mission[J]. Cryogenics, 2004, 44: 395-401.
[15] LAMARREA J M, PUGET J L, BOUCHET F, et al. The Planck high frequency instrument, a third generation CMB experiment and a full sky submillimeter survey [J]. New Astronomy Reviews, 2003, 47(11/12): 1017-1024.
[16] LAMARRE J M, PUGET J L, ADE P A R, et al. Planck prelaunch status: the HFI instrument, from specification to actual performance [J]. Astronomy & Astrophysics 2010, 520: A9.
[17] COLLAUDIN B, PASSVOGEL T. The FIRST and Planck ‘Carrier’missions. Description of the cryogenic systems [J]. Cryogenics, 1999, 39: 157-165.
[18] LEROY C, ARONDEL A, BERNARD JP, et al. Performances of the PlanckHFI cryogenic thermal control system[C]∥ Proceedings of SPIE. Orlando, USA: SPIE, 2006, 6265: 62650H-1.
[19] MORGANTE G, PERRSON D, MELOT F, et al. Cryogenic characterization of the Planck sorption cooler system flight model [J]. Journal of Instrumentation, 2009, 4: T12016.
[20] PEARSOM D, ZHANG B, PRINA M, et al. Flight acceptance testing of the two JPL Planck sorption coolers[C]∥ Cryocooler 14. Boulder: ICC Press, 2007: 497-504.
[21] PRINA M, BHANDARI P, BOWMAN R C, et al. Performance prediction of the Planck sorption cooler and initial validation[C]∥ Advances in Cryogenic Engineering. New York: AIP, 2002, 47: 1201-1208.
[22] BHANDARI P, BOWMAN R C, CHWVE R G, et al. Sorption cryocooler development for the Planck surveyor mission [J]. Astro Lett And Communications, 2000, 37: 227-237.
[23] BRADSHAW T W, ORLOWSKA A H. Technology developments on the 4 K cooling system for Planck and FIRST[C]∥Proceeding of 6th European Symposium on Space Environmental Control Systems. Netherlands: [s. n.],1997: 465-70.
[24] SENTIS L, DELMAS J, CAMUS P, et al. Cryogenic tests of a 0.1 K dilution cooler for PlanckHFI[C]∥ Cryocoolers 13. New York: Springer, 2005: 533542.
[25] TRIQUENEAUX S, SENTIS L, CAMUS P, at al. Design and performance of the dilution cooler system for the Planck mission [J]. Cryogenics, 2006, 46: 288-297.
[26] SATOSHI O, KENICHI K, TOSHIYUKI N, et al. Performance of JEM/SMILES in orbit \
[C\]∥ 21st International Symposium on Space Terahertz Technology. Oxford: Oxford University Press, 2010: 179-184.
[27] SETA M, MASUKO H, MANABE T, et al. Submillimeterwave SIS receiver system for JEM/SMILES [J]. Advances in Space Research, 2000, 26: 1021-2024.
[28] NARASAKI K, TSUNEMATSU S, YAJIMA S, et al. Development of cryogenic system for SMILES[C]∥ Advances in Cryogenic Engineering. New York: AIP, 2004, 49: 1785-1794.
[29] OTSUKA K, TSUNEMATSU S, OKABAYASHI A, et al. Test results after refurbish of cryogenic system for SMILES [J]. Cryogenics, 2010, 50: 512-515.
[30] INATANI J, NARASAKI K, TSUNEMATSU S, et al. Mechanical cooler and cryostat for submillimeter SIS mixer receiver in space[C]∥ Proceedings of SPIE. Toulouse, France: SPIE, 2001, 4540: 197-208.
[31] MURAKAMI H. Japanese infrared survey mission IRIS (ASTROF) [C]∥ Proceedings of SPIE. Kona, USA: SPIE, 1998, 3356: 471-477.
[32] NAKAGAWA T, ENYA K, HIRABAYASHI M, et al. Flight performance of the AKARI cryogenic system [J]. Publications of the Astronomical Society of Japan, 2007, 59: 377-387.
[33] NARASAKI K, TSUNEMATSU S, OOTSUKA K, et al. Development of twostage stirling cooler for AstroF [C]∥ Advances in Cryogenic Engineering. New York: AIP, 2004, 49: 1428-1435.
[34] TAKAHASHI T, MITSUDA K, KELLEY R, et al. The AstroH mission[C]∥ Proceedings of SPIE. Amsterdam, Netherlands: SPIE, 2010, 7732: 77320Z-1.
[35] TAKAHASHI T, KELLEY R, MITSUDA K, et al. The NeXT mission[C]∥ Proceedings of SPIE. Marseille, France: SPIE, 2008, 7011: 70110O-1.
[36] SHINOZAKI K, SUGITA H, SATO Y, et al, Developments of 14 K class space mechanical coolers for new generation satellite missions in JAXA[C]∥Cryocoolers 16. Boulder: ICC Press, 2011: 1-8.
[37] FUJIMOTO R, MITSUDA K, YAMASAKI N, et al, Cooling system for the soft Xray spectrometer onboard AstroH[J]. Cryogenics, 2010, 50: 488-493.
[38] SATO Y, SUGITA H, MITSUDA K, et al. Development of mechanical cryocoolers for AstroH/SXS [J]. Cryogenics, 2010, 50: 500- 506.
[39] SHIRRON P, KIMBALL M, WEGEL D, et al. ADR design for the Soft Xray spectrometer instrument on the AstroH mission [J]. Cryogenics, 2010, 50: 494-499.
[40] ROSS R G, JOHNSON D L. NASA’s advanced cryocooler technology development program (ACDTP) [C]∥ Advances in Cryogenic Engineering. New York: AIP, 2006, 51: 607-614.
[41] OLSON J R, MOORE M, CHAMPAGNE P, et al. Development of a spacetype 4stage pulse tube cryocooler for very low temperature[C]∥ Advances in Cryogenic Engineering. New York: AIP, 2006, 51: 623-631.
[42] GLAISTER D, GULLY W J, HENDERSHOTT P, et al. Ball Aerospace 46 K space cryocooler[C]∥ Cryocooler 14. Boulder: ICC Press, 2007: 41-48.
[43] RAAB J, COLBERT R, HARVEY D, et al. NGST advanced cryocooler technology development program (ACTDP) cooler system[C]∥ Cryocoolers 13. New York: Kluwer Academic/Plenum Publishers, 2005: 9-14.
[44] NAST T C, OLSON J, EVTIMOV B, et al. Development of a twostage pulse tube cryocooler for 35K cooling[C]∥ Cryocoolers 12. New York : Kluwer Academic/Plenum Publishers, 2003: 213-218.
[45] OLSON J, NAST T C, EVTIMOV B, et al. Development of a 10 K pulse tube cryocooler for space application[C]∥ Cryocoolers 12. New York : Kluwer Academic/Plenum Publishers, 2003: 243-245.
[46] NAST T C, OLSON J, ROTH E, et al. Development of Remote Cooling systems for LowTemperature, SpaceBorne systems[C]∥ Cryocooler 14. Boulder: ICC Press, 2007: 33-40.
[47] NAST T, OLSON J, CHAMPAGNE P, et al. Development of a 4.5 K pulse tube cryocooler for superconducting electronics[C]∥ Advances in Cryogenic Engineering. New York: AIP, 2008, 53: 881-886.
[48] GULLY W J, GLAISTER D. The Ball 12 K Stirling cryocooler[C]∥ Advances in Cryogenic Engineering. New York: AIP, 2002, 47: 1045-1052.
[49] BRUNNGHAUS C H Y, TOMLINSON B J, ABHYANKAR N. Performance characterization of the ball aerospace 35/60 K protoflight spacecraft cryocooler[C]∥ Cryocoolers 12. New York : Kluwer Academic/Plenum Publishers, 2003: 51-58.
[50] RAAB.J, TWARD.E. Northrop Grumman Aerospace Systems cryocooler overview [J]. Cryogenics, 2010, 50: 572-581.
[51] JACO C, NGUYEN T, HARVEY D,et al. High capacity staged pulse tube[C]∥ Cryocoolers 13. New York : Kluwer Academic/Plenum Publishers, 2005: 109-113.
[52] NGUYEN T, COLBERT R, DURAND D, et al. 10 K Pulse Tube Cooler[C]∥ Cryocooler 14. Boulder: ICC Press, 2007: 27-31.
[53] NAKAGAWA T, SPICA Working Group. SPICA: space infrared telescope for cosmology and astrophysics [J]. Advances in Space Research, 2004, 34: 645-650.
[54] ONAKA T, TNAKAGAWA T. SPICA: A 3.5 m space infrared telescope for midand farinfrared astronomy [J]. Advances in Space Research, 2005, 36: 1123-1127.
[55] SUGITA H, SATO Y, NAKAGAWA T, et al. Cryogenic system design of the next generation infrared space telescope SPICA [J]. Cryogenics, 2010, 50: 566-571.
[56] SUGITA H, NAKAGAWA T, MURAKAMI H, et al. Cryogenic infrared mission ‘JAXA/SPICA’with advanced cryocoolers [J]. Cryogenics, 2006, 46: 149-157.
[57] SUGITA H, SATO Y, NAKAGAWA T, et al. Development of mechanical cryocoolers for the Japanese IR space telescope SPICA [J]. Cryogenics, 2008, 48: 258-266.
[58] SATO Y, SUGITA H, KOMATSU K, et al. Development of advanced twostage stirling cryocooler for next space missions[C]∥ Cryocooler 15. Boulder: ICC Press, 2009: 13-21.
[59] NARASAKI K, TSUNEMATSU S, OOTSUKA K, et al. Development of 1 Kclass mechanical cooler for SPICA [J]. Cryogenics, 2004, 44: 375-381.

[1] 张楷浩,邱利民,甘智华,周晓晓. 制冷机传导冷却的超导磁体冷却系统研究进展[J]. J4, 2012, 46(7): 1213-1226.
[2] 赖碧翚, 邱利民, 李艳锋, 孙大明. 驻波热声发动机振荡频率转换特性[J]. J4, 2011, 45(10): 1781-1785.
[3] 赖碧翚, 邱利民, 李艳锋, 楼平, 孙大明. 基于热声网络理论的驻波热声发动机起振模拟[J]. J4, 2011, 45(6): 1130-1135.
[4] 白昆,邱利民,王波,等. 耦合管道系统在热声发动机中的传输特性[J]. J4, 2009, 43(8): 1463-1468.