Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (5): 972-980    DOI: 10.3785/j.issn.1008-973X.2019.05.019
能源与环境工程     
联合循环发电系统全生命周期?环境学评估
王光烛1(),陈坚红1,*(),洪细良1,王小荣2,陈强峰2,盛德仁1,李蔚1
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027
2. 浙能萧山发电厂,浙江 杭州 311251
Exergoenvironmental evaluation for combined cycle power generation system based on life cycle assessment
Guang-zhu WANG1(),Jian-hong CHEN1,*(),Xi-liang HONG1,Xiao-rong WANG2,Qiang-feng CHEN2,De-ren SHENG1,Wei LI1
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
2. Zheneng Xiaoshan Power Plant, Hangzhou 311251, China
 全文: PDF(865 KB)   HTML
摘要:

以9FA级燃气-蒸汽联合循环机组为研究对象,建立基于全生命周期(LCA)和Eco-indicator99的?环境学分析模型,探究电力生产过程中环境学成本形成过程. 在对系统组件进行?分析的基础上,明确各组件在全生命周期内的环境学影响,并划分影响组件输出产品的环境学影响因素. 从组件层面揭示联合循环机组环境影响的形成过程以及单个组件对整个系统环境影响的贡献程度. 研究表明,大部分组件自身的环境学影响较小,?损引起的环境学影响构成该组件主要的环境学影响,但燃烧室内污染物降低的环境学影响大于其?损所产生的环境学影响. 联合循环电厂生产电力的环境学影响为5.80 mPts/MJ,近乎“超低排放”燃煤电厂生产电力的环境学影响的一半.

关键词: 联合循环发电系统全生命周期评价?环境学分析环境评价    
Abstract:

An exergoenvironmental analysis model based on life cycle assessment (LCA) and Eco-indicator99 was established to explore the environmental cost formation process in the power production process, taking the 9FA gas-steam combined cycle unit as the research object. The environmental impacts of each component throughout the life cycle were clarified, and the environmental impact factors affecting the component output products were divided, based on the exergoenvironmental analysis of system components. The formation process of the environmental impact of the combined cycle unit and the contribution of individual component to the overall system environmental impact were revealed from the component level. Results showed that the environmental impact of the component itself was small for most components, and the environmental impact caused by the damage constituted the main environmental impact of the component, but the environmental impact of the pollutant reduction in the combustion chamber was greater than that caused by the damage. The environmental impact of electricity production from the combined cycle power plant was 5.80 mPts/MJ, which was nearly half of the environmental impact of electricity production from " ultra-low emission” coal-fired power plants.

Key words: combined cycle power generation system    life cycle assessment    exergoenvironmental analysis    environmental evaluation
收稿日期: 2018-04-28 出版日期: 2019-05-17
CLC:  TM 611  
通讯作者: 陈坚红     E-mail: 21727025@zju.edu.cn;power@zju.edu.cn
作者简介: 王光烛(1995—),女,硕士,从事联合循环发电系统研究. oricd.org/0000-0001-7323-1860. E-mail: 21727025@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王光烛
陈坚红
洪细良
王小荣
陈强峰
盛德仁
李蔚

引用本文:

王光烛,陈坚红,洪细良,王小荣,陈强峰,盛德仁,李蔚. 联合循环发电系统全生命周期?环境学评估[J]. 浙江大学学报(工学版), 2019, 53(5): 972-980.

Guang-zhu WANG,Jian-hong CHEN,Xi-liang HONG,Xiao-rong WANG,Qiang-feng CHEN,De-ren SHENG,Wei LI. Exergoenvironmental evaluation for combined cycle power generation system based on life cycle assessment. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 972-980.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.05.019        http://www.zjujournals.com/eng/CN/Y2019/V53/I5/972

污染物 P/(mPts·kg?1 污染物 P/(mPts·kg?1
CO2 5.454 5 CH4 114.622 0
NO 4 216.740 0 PM 2.5 18 181.180 0
NO2 2 749.360 0
表 1  单位质量污染物的环境学影响
参数 取值 参数 取值
空气质量流量 2 270.2 t/h 大气温度 17.4 °C
燃料质量流量 50.1 t/h 大气相对湿度 78.89%
天然气低位发电量 48 686.3 kJ/kg 大气压力 101.10 kPa
额定热效率 60.6% 余热锅炉排烟温度 83.8 °C
功率 388.9 MW 再热蒸汽温度 565.5 °C
排汽压力 5.84 kPa 主蒸汽温度 565.5 °C
表 2  燃气-蒸汽联合循环发电系统主要参数
组分 rB/% 组分 rB/%
CO2 0.61 I-C4H10 0.10
N2 2.59 n-C4H10 0.13
CH4 93.09 I-C5H12 0.04
C2H6 2.51 n-C5H12 0.04
C3H8 0.62 C6H14 0.24
表 3  天然气主要组分表
组分 ρB/(mg·m?3 组分 ρB/(mg·m?3
N2 837 836 NO 47
CO2 65 103 NO2 38
H2O 61 964 PM 2.5 49
表 4  余热锅炉出口烟气质量浓度
图 1  9FA级型燃气-蒸汽联合循环发电机组热力系统图
组件 EF,k/MW EP,k/MW ED,k/MW εk/% yD,k/%
AC(压气机) 244.69 231.94 12.74 94.79 1.87
CC(燃烧室) 916.51 738.39 178.11 80.57 26.09
FH(燃料加热器) 1.95 1.41 0.54 72.23 0.08
GT(燃机) 519.81 491.65 28.16 94.58 4.13
HP(高压汽机) 32.60 31.02 1.58 95.15 0.23
IP(中压汽机) 47.76 45.78 1.98 95.84 0.29
LP(低压汽机) 75.63 68.66 6.97 90.78 1.02
GEN(发电机) 392.43 388.90 3.53 99.10 0.52
CND(冷凝器) 24.26 19.28 4.98 79.48 0.73
CP(凝结水泵) 0.11 0.08 0.03 74.64 0.00
RP(再循环水泵) 0.02 0.02 0.00 82.06 0.00
LPEC(高压省煤器) 15.78 12.21 3.57 77.40 0.52
LPEV(高压蒸发器) 9.73 8.51 1.23 87.39 0.18
LPSH2(低压过热器) 0.52 0.39 0.13 74.53 0.02
LPSH1(低压过热器) 1.42 1.05 0.37 73.81 0.05
IPEC(中压省煤器) 2.68 2.38 0.29 89.00 0.04
IPEV(中压蒸发器) 9.87 9.13 0.74 92.53 0.11
IPSH(中压过热器) 1.21 1.03 0.18 84.77 0.03
HPEC2(高压省煤器) 10.46 9.33 1.13 89.21 0.17
HPEC1(高压省煤器) 18.80 17.62 1.18 93.73 0.17
HPEV(高压蒸发器) 62.31 55.74 6.57 89.45 0.96
HPSH2(高压过热器) 30.97 27.67 3.30 89.36 0.48
HPSH1(高压过热器) 11.19 10.39 0.80 92.82 0.12
RH(再热器) 28.96 25.72 3.24 88.82 0.47
HFP(高压给水泵) 1.07 0.92 0.16 85.19 0.02
IFP(中压给水泵) 0.08 0.06 0.02 75.34 0.00
表 5  燃气-蒸汽联合发电系统循环组件㶲分析
图 2  燃气-蒸汽联合循环系统组件㶲表现
物质 P 物质 P
高合金 910 1 400
低合金 110 铸铁 240
86 ? ?
表 6  材料的环境学影响
图 3  组件自身环境学影响
图 4  燃气-蒸汽联合循环发电系统组件的㶲环境学表现
组件 BD,k/
(mPts·s?1
$ {Y_k} + B_k^{{\rm{PF}}} + {B_{{\rm{D}},k}} \\ $/
(mPts·s?1
bF,k bP,k fb,k/% rb,k/%
AC 69.50 69.66 5.45 5.75 0.23 5.50
CC 978.42 ?247.81 5.49 5.16 494.83 ?6.11
FH 3.37 3.38 6.22 8.65 0.38 39.00
GT 145.24 145.38 5.16 5.45 0.10 5.74
HP 9.17 9.24 5.79 6.09 0.77 5.14
IP 11.50 11.59 5.80 6.05 0.74 4.37
LP 40.69 41.01 5.83 6.43 0.79 10.24
GEN 20.29 20.50 5.74 5.80 1.01 0.91
CND 29.06 29.23 5.84 7.35 0.57 25.99
CP 0.17 0.18 5.80 8.52 7.61 47.03
RP 0.02 0.02 5.80 7.28 5.80 25.53
LPEC 18.39 18.50 5.16 6.68 0.59 29.56
LPEV 6.33 6.40 5.16 5.92 1.13 14.76
LPSH2 0.68 0.68 5.16 6.94 0.89 34.53
LPSH1 1.92 1.93 5.16 6.93 0.72 34.30
IPEC 1.52 1.53 5.16 5.76 0.49 11.61
IPEV 3.80 3.85 5.16 5.58 1.35 8.15
IPSH 0.95 0.96 5.16 5.93 0.53 15.01
HPEC2 5.82 5.85 5.16 5.80 0.62 12.43
HPEC1 6.08 6.14 5.16 5.51 0.90 6.93
HPEV 33.89 34.06 5.16 5.77 0.47 11.87
HPSH2 17.00 17.31 5.16 5.78 1.81 12.02
HPSH1. 4.15 4.25 5.16 5.58 2.50 8.24
RH 16.70 17.13 5.16 5.82 2.53 12.87
HFP 0.92 0.93 5.80 6.91 1.28 19.28
IFP 0.11 0.11 5.80 8.06 3.84 38.98
表 7  联合循环电厂组件㶲环境学分析
参数 数值 参数 数值
BPF,tot/(mPts·s?1 ?1 226.41 Ytot/(mPts·s?1 2.749
BF,tot/(mPts·s?1 3 687.92 BD,tot/(mPts·s?1 1 412.99
BP,tot/(mPts·s?1 2 247.04 bF,tot/(mPts·s?1 5.40
BL,tot/(mPts·s?1 217.51 bP,tot/(mPts·MJ?1 5.80
表 8  系统层面㶲环境学分析
1 MEYER L, TSATSARONIS G, BUCHGEISTER J, et al Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems[J]. Energy, 2009, 34 (1): 75- 89
doi: 10.1016/j.energy.2008.07.018
2 LAZZARETTO A A critical comparison between thermoeconomic and emergy analyses algebra[J]. Energy, 2009, 34 (12): 2196- 2205
doi: 10.1016/j.energy.2008.10.020
3 KOORNNEEF J, KEULEN T V, FAAIJ A, et al Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2[J]. International Journal of Greenhouse Gas Control, 2008, 2 (4): 448- 467
doi: 10.1016/j.ijggc.2008.06.008
4 TURCONI R, O’DWYER C, FLYNN D, et al Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: life cycle assessment for Ireland[J]. Applied Energy, 2014, 131 (9): 1- 8
5 MEYER L. Exergiebasierte untersuchung der entstehung von umweltbelastungen in energieumwandlungsprozessen auf komponentenebene: exergo?kologische analyse [D]. Darmstadt: Universit?t Darmstadt, 2006.
6 PETRAKOPOULOU F, BOYANO A, CABRERA M, et al Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology[J]. International Journal of Greenhouse Gas Control, 2011, 5 (3): 475- 482
doi: 10.1016/j.ijggc.2010.06.008
7 AHMADI P, DINCER I, ROSEN M A Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration[J]. Energy Conversion and Management, 2012, 64: 447- 453
doi: 10.1016/j.enconman.2012.06.001
8 AHMADI P, DINCER I Exergoenvironmental analysis and optimization of a cogeneration plant system using multimodal genetic algorithm (MGA)[J]. Energy, 2010, 35 (12): 5161- 5172
doi: 10.1016/j.energy.2010.07.050
9 BANERJEE A, TIERNEY M Comparison of five exergoenvironmental methods applied to candidate energy systems for rural villages in developing countries[J]. Energy, 2011, 36 (5): 2650- 2661
doi: 10.1016/j.energy.2011.02.006
10 王彦峰, 冯霄 综合考虑资源利用与环境影响的?分析法应用[J]. 中国科学, 2001, 31 (1): 89- 96
WANG Yan-feng, FENG Xiao Application of the enthalpy analysis method to comprehensively consider resource use and environmental impact[J]. Chinese Science, 2001, 31 (1): 89- 96
doi: 10.3969/j.issn.1674-7224.2001.01.012
11 戴恩贤, 张新铭 基于?参数的环境影响评价[J]. 重庆大学学报, 2008, (3): 15- 18
DAI En-xian, ZHANG Xin-ming Environmental impact assessment based on radon parameters[J]. Journal of Chongqing University, 2008, (3): 15- 18
12 雷菁, 陈菁, 张新铭 基于?参数环境影响评价探讨[J]. 电力科技与环保, 2010, 26 (2): 12- 14
LEI Jing, CHEN Jing, ZHANG Xin-ming Discussion on environmental impact assessment based on radon parameters[J]. Power Science and Technology and Environmental Protection, 2010, 26 (2): 12- 14
doi: 10.3969/j.issn.1674-8069.2010.02.004
13 陈清林, 王松平, 尹清华, 等. 基于?概念的能量系统环境效应评价和建模[J]. 工程热物理学报, 2003, 24(6): 92-94.
CHEN Qing-lin, WANG Song-ping, YIN Qing-hua, et al. Energy system environmental effect evaluation and modeling strategy based on exergy concept [J]. Journal of Engineering Thermodynamics, 2003, 24(6): 92-94.
14 杨勇平, 刘文毅, 郭喜燕, 等. 考虑环境成本的能量系统广义?经济学分析模型[J]. 工程热物理学报, 2004, 25(1): 5-8.
YANG Yong-ping, LIU Wen-yi, GUO Xi-yan, et al. Energy system generalized unitary economics analysis model considering environmental costs [J]. Journal of Engineering Thermodynamics, 2004, 25(1): 5-8.
15 蒋爱华. 泛?分析方法及其应用研究[D]. 长沙: 中南大学, 2011.
JIANG Ai-hua. Extensive exergy analysis method and its application research [D]. Changsha: Central South University, 2011.
16 王佼佼. 火电机组烟气余热利用的能源-经济-环境综合评价[D]. 北京: 华北电力大学, 2015.
WANG Jiao-jiao. Comprehensive evaluation of energy-economy-environment for waste heat utilization of thermal power unit [D]. Beijing: North China Electric Power University, 2015.
17 HONG X L, CHEN J H, LV H, et al Advanced exergoenvironmental evaluation for a coal-fired power plant of near-zero air pollutant emission[J]. Applied Thermal Engineering, 2018, 128: 1139- 1150
doi: 10.1016/j.applthermaleng.2017.08.068
18 MORAN M J, SHAPIRO H N, BOETTNER D D, et al. Fundamentals of engineering thermodynamics [M]. 7th edition. New York: Wiley, 2010.
19 European Committee for Standardization. Environmental management-life cycle assessment-principles and framework: ISO 14040—2006 [S]. Geneva: International Organization for Standardization, 2006: 1-5.
20 KIM S, DALE B E Life cycle inventory information of the united states electricity system[J]. International Journal of Life Cycle Assessment, 2005, 10 (4): 294- 304
doi: 10.1065/lca2004.09.176
21 DREYER L C, NIEMANN A L, HAUSCHILD M Z. Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99 [J]. The International Journal of Life Cycle Assessment, 2003, 8(4): 191-200.
22 GOEDKOOP M J, SPRIENSMA R. The Eco-Indicator 99: a damage oriented method for life cycle impact assessment [J]. Pain, 2001, 11(Suppl. 1): S95.
23 LAZZARETTO A, TSATSARONIS G SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems[J]. Energy, 2014, 31 (8): 1257- 1289
24 李新, 崔献丹, 梁亚楠, 等 中国金属矿产的消费强度与回收潜力分析[J]. 中国人口·资源与环境, 2017, 27 (7): 53- 59
LI Xin, CUI Xian-dan, LIANG Ya-nan, et al Analysis of consumption intensity and recovery potential of metal minerals in China[J]. China Population, Resources and Environment, 2017, 27 (7): 53- 59
[1] 申永刚 张治成 谢旭. 复杂场地车辆引起的环境振动[J]. J4, 2008, 42(6): 1089-1093.