Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (6): 1296-1304    DOI: 10.3785/j.issn.1008-973X.2024.06.019
环境工程     
基于遗传-模式搜索算法的微尺度管控区域大气污染物PM2.5溯源
董红召1,金灿1,唐伟2,佘翊妮1,*(),林盈盈1
1. 浙江工业大学 智能交通系统研究所,浙江 杭州 310014
2. 杭州市生态环境科学研究院,浙江 杭州 310014
Back-calculation of outdoor PM2.5 pollutant source around microscale controlled area by genetic-pattern search algorithm
Hongzhao DONG1,Can JIN1,Wei TANG2,Yini SHE1,*(),Yingying LIN1
1. ITS Joint Research Institute, Zhejiang University of Technology, Hangzhou 310014, China
2. Hangzhou Institute of Environment Sciences, Hangzhou 310014, China
 全文: PDF(2445 KB)   HTML
摘要:

针对微尺度管控区域可能发生的大气污染提出有效的靶向诊断方法?结合高斯烟羽模型和遗传-模式搜索算法的大气污染物分布式溯源方法. 将污染源反算模型得到的污染物理论质量浓度与传感器网络观测值的数据对应关系作为目标函数,使用模式搜索算法嵌入遗传算法加快反算模型的搜索过程,反算得到污染源强度和位置. 依托杭州市亚运板球场馆大气感知器网络进行实验验证,监测2021年10月PM2.5质量浓度、气象数据,对所提出的混合式大气污染溯源方法进行实验验证. 实验结果表明:改进遗传-模式搜索算法对于多维变量的搜索效果较好,能快速精准地反算污染源的位置和强度,可以为微尺度管控区域突发性气体污染防治提供应急决策参考.

关键词: 源强反算遗传-模式搜索算法高斯烟羽模型微尺度管控颗粒物污染溯源    
Abstract:

An effective targeted diagnosis method, distributed traceability method for atmospheric pollutants combining Gaussian plume model and genetic-pattern search algorithm, was proposed, aiming at air pollutants that may occur in the micro-scale control area. The corresponding relationship between the calculated pollutant concentration obtained from pollution backcalculation model and the observation value of the monitoring sensor was used as the objective function. Pattern search algorithm was embedded in the genetic algorithm to speed up the search process of the inverse calculation model, then to inversely calculate the intensity and location of the pollution source. A validation experiment was conducted by monitoring the PM2.5 mass concentration, meteorology and other data based on the atmospheric sensor data of Hangzhou Asian Games cricket stadium in October 2021. Results showed, compared with other methods, the effect of the improved genetic-pattern search algorithm for multi-dimensional variables was better, and the location and intensity of pollution sources could be calculated more quickly and accurately. This research can provide suggested solution for environmental emergencies of air pollution in micro-scale control regions.

Key words: source inversion    genetic-pattern search algorithm    Gaussian plume model    micro-scale control    tracing of particulate matter pollution
收稿日期: 2023-05-29 出版日期: 2024-05-25
CLC:  X 51  
基金资助: 浙江省公益技术研究资助项目(LGF20F030001);杭州市农业与社会发展科研资助项目(20201203B158).
通讯作者: 佘翊妮     E-mail: qiche@zjut.edu.cn
作者简介: 董红召(1969—),男,教授,从事智能交通系统、智能环保研究. orcid.org/0000-0001-5905-597X. E-mail:its@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
董红召
金灿
唐伟
佘翊妮
林盈盈

引用本文:

董红召,金灿,唐伟,佘翊妮,林盈盈. 基于遗传-模式搜索算法的微尺度管控区域大气污染物PM2.5溯源[J]. 浙江大学学报(工学版), 2024, 58(6): 1296-1304.

Hongzhao DONG,Can JIN,Wei TANG,Yini SHE,Yingying LIN. Back-calculation of outdoor PM2.5 pollutant source around microscale controlled area by genetic-pattern search algorithm. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1296-1304.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.06.019        https://www.zjujournals.com/eng/CN/Y2024/V58/I6/1296

v/(m·s?1白天(太阳辐射)夜晚(云量)
多云无云
<2.0AA、BBEF
2.0~3.0A、BBCEF
3.0~5.0B、CB、CCDE
5.0~6.0C、DC、DDDD
>6.0DDDDD
表 1  高斯烟羽模型中的大气稳定度分类
大气稳定度$ {\mathrm{\sigma }}_{y} $$ {\mathrm{\sigma }}_{z} $
A、B$ {0.32(1+0.000\;4x)}^{-{1}/{2}} $$ {0.24(1+0.000\;1x)}^{-{1}/{2}} $
C$ {0.22(1+0.000\;4x)}^{-{1}/{2}} $$ 0.20x $
D$ {0.16(1+0.000\;4x)}^{-{1}/{2}} $$ {0.14(1+0.000\;3x)}^{-{1}/{2}} $
E、F$ {0.11(1+0.000\;4x)}^{-{1}/{2}} $$ {0.08(1+0.015\;0x)}^{-{1}/{2}} $
表 2  高斯烟羽模型中的扩散系数
图 1  遗传-模式搜索算法流程
图 2  大气污染感知器分布
编号数据类型经度纬度N
1PM2.5、PM10质量浓度120.0332° E30.2305° N996 906
2风速风向、PM2.5、PM10质量浓度120.0360° E30.2322° N62 166
3风速风向、PM2.5、PM10质量浓度120.0359° E30.2289° N588 295
4PM2.5、PM10质量浓度120.0336° E30.2283° N540 618
5风速风向、PM2.5、PM10质量浓度120.0311° E30.2274° N1 027 629
6PM2.5、PM10质量浓度120.0541° E30.2355° N488 188
表 3  大气感知网络中感知器位置及数据量
图 3  大气感知器网络中各感知器的PM2.5质量浓度监测数据
图 4  预处理后的PM2.5质量浓度数据
传感器序号坐标/m$ {\rho }_{\mathrm{m}\mathrm{e}\mathrm{a}}^{{i}} $/(μg·m?3
1(287.5,345.7)19
2(70.6,135.1)75
3(252.3,37.1)20
4(83.9,?30.3)87
5(?56.2,?98.8)49
6(?230.0,?209.4)19
表 4  传感器位置及PM2.5质量浓度观测值
反算参数q0/(g·s?1x0/my0/m
期望值1.3900
运行结果1.67?7.511.3
表 5  遗传-模式搜索算法反算结果
图 5  10月污染源位置搜索热点
算法t/sq0/(g·s?1x0/my0/mΔq0/%Δx0/mΔy0/m
GA-PS2.441.29?7.14.87.2?7.14.8
GA-NM2.571.73?21.14.324.5?21.14.3
PSO-NM2.651.6541.1?35.018.741.1?35.0
表 6  各算法响应时间和搜索准确度比较
图 6  各算法搜索热点对比
图 7  不同算法坐标反演误差稳定性比较
1 CHEN Y, LUO X, ZHAO Z, et al Summer-winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals[J]. Ecotoxicology and Environmental Safety, 2018, 165 (9): 505- 509
2 QIU X, DUAN L, CHAI F, et al Deriving high-resolution emission inventory of open biomass burning in China based on satellite observations[J]. Environmental Science and Technology, 2016, 50 (21): 11779- 11779
doi: 10.1021/acs.est.6b02705
3 HUANG J, CHEN Z, ZHOU B, et al Cause analysis of PM2.5 pollution during the COVID-19 lockdown in Nanning, China[J]. Scientific Reports, 2021, (11): 11119
4 TIAN Y, HARRISON R M, FENG Y, et al Size-resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components[J]. Environmental Pollution, 2021, 289: 117932
5 HAUPT S E, HAUPT R L, YOUNG G S A mixed integer genetic algorithm used in biological and chemical defense applications[J]. Soft Computing, 2011, 15 (1): 51- 59
doi: 10.1007/s00500-009-0516-z
6 LIU X, ZHAI Z Inverse modeling methods for indoor airborne pollutant tracking: literature review and fundamentals[J]. Indoor Air, 2007, 17 (6): 419- 438
doi: 10.1111/j.1600-0668.2007.00497.x
7 WANG Y, HUANG H, HUANG L, et al Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions[J]. Engineering Applications of Artificial Intelligence, 2018, 75 (11): 102- 113
8 MONACHE L D, LUNDQUIST J K, KOSOVIC B, et al Bayesian inference and Markov Chain Monte Carlo sampling to reconstruct a contaminant source on a continental scale[J]. Journal of Applied Meteorology and Climatology, 2008, 47 (10): 2600- 2613
doi: 10.1175/2008JAMC1766.1
9 LEE B, CHO S, LEE S, et al Development of a smoke dispersion forecast system for Korean forest fires[J]. Forests, 2019, 10 (3): 219
doi: 10.3390/f10030219
10 ZHANG Q, GUO R, ZHANG C, et al Radioactive airborne effluents and the environmental impact assessment of CAP1400 nuclear power plant under normal operation[J]. Nuclear Engineering and Design, 2014, 280 (12): 579- 585
11 BANAN Z, GERNAND J M Emissions of particulate matter due to Marcellus Shale gas development in Pennsylvania: mapping the implications[J]. Energy Policy, 2021, 148 (1): 111979
12 HE P, ZHENG B, ZHENG J, et al Urban PM2.5 diffusion analysis based on the improved Gaussian smoke plume model and support vector machine[J]. Aerosol and Air Quality Research, 2018, 18 (12): 3177- 3186
doi: 10.4209/aaqr.2017.06.0223
13 AKCELIK V, BIROS G, GHATTAS O, et al A variational finite element method for source inversion for convective-diffusive transport[J]. Finite Elements in Analysis and Design, 2003, 39 (8): 683- 705
doi: 10.1016/S0168-874X(03)00054-4
14 MA D, TAN W, ZHANG Z, et al Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm[J]. Journal of Hazardous Materials, 2017, 325: 239- 250
doi: 10.1016/j.jhazmat.2016.11.071
15 THOMSON L C, HIRST B, GIBSON G, et al An improved algorithm for locating a gas source using inverse methods[J]. Atmospheric Environment, 2007, 41 (6): 1128- 1134
doi: 10.1016/j.atmosenv.2006.10.003
16 梁俊丽, 孔维华, 费文华, 等 基于复杂地形的高斯烟羽模型改进[J]. 环境工程学报, 2016, 10 (6): 5
LIANG Junli, KONG Weihua, FEI Wenhua, et al lmprovement of Gaussian plume model in complex terrain[J]. Chinese Journal of Environmental Engineering, 2016, 10 (6): 5
doi: 10.12030/j.cjee.201501066
17 GROSSEL S S Chemical process safety: fundamentals with applications, 2nd edition (2002)[J]. Journal of Loss Prevention in the Process Industries, 2002, 15 (15): 565- 566
18 胡鸿昊, 李秀娟, 于俊锋, 等 基于耦合模拟的污水管网入流入渗定量识别[J]. 浙江大学学报:工学版, 2022, 56 (11): 8
HU Honghao, LI Xiujuan, YU Junfeng, et al Quantitative identification of inflow and infiltration of sanitary sewer system based on coupling simulation[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 8
19 向胜涛, 王达 基于改进量子遗传算法的模型交互修正方法[J]. 浙江大学学报:工学版, 2022, 56 (1): 11
XIANG Shengtao, WANG Da Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 11
20 谢劭峰, 曾印, 张继洪, 等 基于MLP神经网络的大气加权平均温度模型[J]. 大地测量与地球动力学, 2022, 42 (11): 1105- 1110
XIE Shaofeng, ZENG Yin, ZHANG Jihong, et al Atmospheric weighted mean temperature model based on mlp neural network[J]. Journal of Geodesy and Geodynamics, 2022, 42 (11): 1105- 1110
21 生态环境部. 污染源源强核算技术指南准则: HJ884—2018 [S]. 北京: 中国环境科学出版社, 2018.
22 张建文, 王煜薇, 郑小平, 等 基于混合遗传- Nelder Mead单纯形算法的源强及位置反算[J]. 系统工程理论与实践, 2011, 31 (8): 1581- 1587
ZHANG Jianwen, WANG Yuwei, ZHENG Xiaoping, et al Back-calculation of source strength and position by a hybrid genetic-Nelder Mead simplex algorithm[J]. Systems Engineering: Theory and Practice, 2011, 31 (8): 1581- 1587
23 沈泽亚, 郎建垒, 程水源, 等 典型耦合优化算法在源项反演中的对比研究[J]. 中国环境科学, 2019, 39 (8): 3207- 3214
SHEN Zeya, LANG Jianlei, CHENG Shuiyuan, et al Comparative and study on the application of typical hybrid algorithms in source parameter inversions[J]. China Environmental Science, 2019, 39 (8): 3207- 3214
doi: 10.3969/j.issn.1000-6923.2019.08.010
[1] 范海东,陈竹,赵中阳,梁成思,郑成航,高翔. 1 000 MW燃煤机组湿法脱硫装置氧化系统运行优化[J]. 浙江大学学报(工学版), 2023, 57(4): 675-682.
[2] 郭萌,张玉茹,魏幸,王文静. 固胺负载SBA-15的石墨烯改性及其CO2吸附性能[J]. 浙江大学学报(工学版), 2022, 56(8): 1588-1596.
[3] 高尔豪,寿恬雨,黄蓓,王伟,施耀. CuCr2O4催化剂形貌特征与其SCR脱硝性能的关系[J]. 浙江大学学报(工学版), 2022, 56(6): 1199-1205.
[4] 王涛,董昊,侯成龙,王欣茹. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475.
[5] 王浩霖,骆仲泱,赫明春,沈丹. 烟气成分对静电除尘器放电特性的影响[J]. 浙江大学学报(工学版), 2020, 54(12): 2336-2343.
[6] 韦彦斐,周荣,周敏捷,高翔. 水泥炉窑SNCR-SCR联合脱硝中试实验研究[J]. 浙江大学学报(工学版), 2020, 54(10): 1986-1992.
[7] 王军明,赵兴亚,陈玲红,韩黎霞,高翔,岑可法. 氨对二次有机气溶胶光学特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1812-1818.
[8] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[9] 李康为,应方,陈玲红,郑仙珏,韩黎霞,吴学成,高翔,岑可法. 杭州市主城区VOCs污染特征及影响因素[J]. 浙江大学学报(工学版), 2019, 53(4): 671-683.
[10] 胡磊青,程军,王亚丽,刘建忠,周俊虎,岑可法. PVP改性PDMS/PAN中空纤维复合膜提升表面亲水性[J]. 浙江大学学报(工学版), 2019, 53(2): 228-233.
[11] 程军,刘建峰,张曦,张泽,田江磊,周俊虎,岑可法. 微藻水热提取油脂经脱氧断键制航油[J]. 浙江大学学报(工学版), 2019, 53(2): 214-219.
[12] 周栋, 骆仲泱, 鲁梦诗, 赫明春, 陈浩, 方梦祥. 单分散气溶胶的声波团聚实验[J]. 浙江大学学报(工学版), 2017, 51(2): 358-362.
[13] 宁致远, 沈欣军, 李树然, 闫克平. 湿式除尘器内部湍流场与粒子轨迹的数值分析[J]. 浙江大学学报(工学版), 2017, 51(2): 384-392.
[14] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.
[15] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.