机械工程、能源工程 |
|
|
|
|
直接空气捕集CO2吸附剂综述 |
王涛( ),董昊,侯成龙,王欣茹 |
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027 |
|
Review of CO2 direct air capture adsorbents |
Tao WANG( ),Hao DONG,Cheng-long HOU,Xin-ru WANG |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
引用本文:
王涛,董昊,侯成龙,王欣茹. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475.
Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG. Review of CO2 direct air capture adsorbents. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 462-475.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.005
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I3/462
|
1 |
SIEGMUND P, ABERMANN J, BADDOUR O, et al. The global climate in 2015–2019 [R]. Geneva: World Meteorological Organization, 2020.
|
2 |
MASSON D V, ZHAI P, PÖRTNER H O, et al. An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [R]. Geneva: Intergovernmental Panel on Climate Change, 2018.
|
3 |
FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al Global carbon budget 2020[J]. Earth System Science Data, 2020, 12 (4): 3269- 3340
doi: 10.5194/essd-12-3269-2020
|
4 |
中华人民共和国国务院新闻办公室. 政府白皮书: 新时代的中国能源发展[R/OL]. (2020-12-21)[2021-03-01]. http://www.gov.cn/zhengce/2020-12/21/content_5571916.htm
|
5 |
International Energy Agency. Energy technology perspectives 2020 [R]. Paris: International Energy Agency, 2020.
|
6 |
MINX J C, LAMB W F, CALLAGHAN M W, et al Negative emissions—part 1: research landscape and synthesis[J]. Environmental Research Letters, 2018, 13 (6): 063001
doi: 10.1088/1748-9326/aabf9b
|
7 |
FUSS S, LAMB W F, CALLAGHAN M W, et al Negative emissions—part 2: costs, potentials and side effects[J]. Environmental Research Letters, 2018, 13 (6): 063002
doi: 10.1088/1748-9326/aabf9f
|
8 |
LACKNER K S. Capture of carbon dioxide from ambient air[J]. The European Physical Journal Special Topics, 2009, 176: 93- 106
doi: 10.1140/epjst/e2009-01150-3
|
9 |
KEITH D W Why capture CO2 from the atmosphere? [J]. Science, 2009, 325 (5948): 1654- 1655
doi: 10.1126/science.1175680
|
10 |
JONES C W CO2 capture from dilute gases as a component of modern global carbon management [J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2 (1): 31- 52
doi: 10.1146/annurev-chembioeng-061010-114252
|
11 |
ROCHELLE G T Amine scrubbing for CO2 capture [J]. Science, 2009, 325 (5948): 1652- 1654
doi: 10.1126/science.1176731
|
12 |
KIANI A, JIANG K, FERON P Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process [J]. Frontiers in Energy Research, 2020, 8 (92): 1- 13
|
13 |
SHI X, XIAO H, AZARABADI H, et al Sorbents for the direct capture of CO2 from ambient air [J]. Angewandte Chemie International Edition, 2020, 59 (18): 6984- 7006
doi: 10.1002/anie.201906756
|
14 |
NIKULSHINA V, GáLVEZ M E, STEINFELD A Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle [J]. Chemical Engineering Journal, 2007, 129 (1/3): 75- 83
|
15 |
NIKULSHINA V, AYESA N, GáLVEZ M E, et al Feasibility of Na-based thermochemical cycles for the capture of CO2 from air: thermodynamic and thermogravimetric analyses [J]. Chemical Engineering Journal, 2008, 140 (1/3): 62- 70
|
16 |
VESELOVSKAYA J V, DEREVSCHIKOV V S, KARDASH T Y, et al Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent [J]. International Journal of Greenhouse Gas Control, 2013, 17: 332- 340
doi: 10.1016/j.ijggc.2013.05.006
|
17 |
VESELOVSKAYA J V, DEREVSCHIKOV V S, SHALYGIN A S, et al K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air [J]. Microporous and Mesoporous Materials, 2021, 310: 110624
doi: 10.1016/j.micromeso.2020.110624
|
18 |
D'ALESSANDRO D M, SMIT B, LONG J R Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49 (35): 6058- 6082
doi: 10.1002/anie.201000431
|
19 |
KUMAR A, MADDEN D G, LUSI M, et al Direct air capture of CO2 by physisorbent materials [J]. Angewandte Chemie International Edition, 2015, 54 (48): 14372- 14377
doi: 10.1002/anie.201506952
|
20 |
MADDEN D G, SCOTT H S, KUMAR A, et al Flue-gas and direct-air capture of CO2 by porous metal-organic materials [J]. Philosophical Transactions of The Royal Society A, 2017, 375 (2084): 1- 11
|
21 |
MCDONALD T M, LEE W R, MASON J A, et al Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc) [J]. Journal of the American Chemical Society, 2012, 134 (16): 7056- 7065
doi: 10.1021/ja300034j
|
22 |
LEE W R, HWANG S Y, RYU D W, et al Diamine-functionalized metal–organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism [J]. Energy and Environmental Science, 2014, 7 (2): 744- 751
doi: 10.1039/C3EE42328J
|
23 |
GUO M, WU H, LV L, et al A Highly efficient and stable composite of polyacrylate and metal-organic framework prepared by interface engineering for direct air capture[J]. Applied Materials and Interfaces, 2021, 13 (18): 21775- 21785
doi: 10.1021/acsami.1c03661
|
24 |
BELMABKHOUT Y, SERNA-GUERRERO R, SAYARI A Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification [J]. Industrial and Engineering Chemistry Research, 2010, 49 (1): 359- 365
doi: 10.1021/ie900837t
|
25 |
DIDAS S A, CHOI S, CHAIKITTISILP W, et al Amine-oxide hybrid materials for CO2 capture from ambient air [J]. Accounts of Chemical Research, 2015, 48 (10): 2680- 2687
doi: 10.1021/acs.accounts.5b00284
|
26 |
SANZ-PéREZ E S, MURDOCK C R, DIDAS S A, et al Direct capture of CO2 from ambient air [J]. Chemical Reviews, 2016, 116 (19): 11840- 11876
doi: 10.1021/acs.chemrev.6b00173
|
27 |
ZHANG H, GOEPPERT A, PRAKASH G K S, et al Applicability of linear polyethylenimine supported on nano-silica for the adsorption of CO2 from various sources including dry air [J]. RSC Advances, 2015, 5 (65): 52550- 52562
doi: 10.1039/C5RA05428A
|
28 |
RIM G, FERIC T G, MOORE T, et al Solvent impregnated polymers loaded with liquid-like nanoparticle organic hybrid materials for enhanced kinetics of direct air capture and point source CO2 capture [J]. Advanced Functional Materials, 2021, 31 (21): 2010047
doi: 10.1002/adfm.202010047
|
29 |
HOLEWINSKI A, SAKWA-NOVAK M A, CARRILLO J Y, et al Aminopolymer mobility and support interactions in silica-PEI Composites for CO2 capture applications: a quasielastic neutron scattering study [J]. The Journal of Physical Chemistry B, 2017, 121 (27): 6721- 6731
doi: 10.1021/acs.jpcb.7b04106
|
30 |
CHOI S, DRESE J H, EISENBERGER P M, et al Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air [J]. Environmental Science and Technology, 2011, 45 (6): 2420- 2427
doi: 10.1021/es102797w
|
31 |
LIU F Q, WANG L, HUANG Z G, et al Amine-tethered adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air [J]. ACS Applied Material and Interfaces, 2014, 6 (6): 4371- 4381
doi: 10.1021/am500089g
|
32 |
GOEPPERT A, CZAUN M, MAY R B, et al Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent[J]. Journal of the American Chemical Society, 2011, 133 (50): 20164- 20167
doi: 10.1021/ja2100005
|
33 |
WANG J, HUANG H, WANG M, et al Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature [J]. Industrial and Engineering Chemistry Research, 2015, 54 (19): 5319- 5327
doi: 10.1021/acs.iecr.5b01060
|
34 |
ZHU X, GE T, YANG F, et al Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides [J]. Journal of Materials Chemistry A, 2020, 8 (32): 16421- 16428
doi: 10.1039/D0TA05079B
|
35 |
LIU L, CHEN J, TAO L, et al Aminopolymer confined in ethane-silica nanotubes for CO2 capture from ambient air [J]. ChemNanoMat, 2020, 6 (7): 1096- 1103
doi: 10.1002/cnma.201900742
|
36 |
KWON H T, SAKWA-NOVAK M A, PANG S H, et al Aminopolymer-impregnated hierarchical silica structures: unexpected equivalent CO2 uptake under simulated air capture and flue gas capture conditions [J]. Chemistry of Materials, 2019, 31 (14): 5229- 5237
doi: 10.1021/acs.chemmater.9b01474
|
37 |
CHEN Z, DENG S, WEI H, et al Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air [J]. ACS Applied Material and Interfaces, 2013, 5 (15): 6937- 6945
|
38 |
SEHAQUI H, GALVEZ M E, BECATINNI V, et al Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams [J]. Environmental Science and Technology, 2015, 49 (5): 3167- 3174
doi: 10.1021/es504396v
|
39 |
WANG T, LIU J, HUANG H, et al Preparation and kinetics of a heterogeneous sorbent for CO2 capture from the atmosphere [J]. Chemical Engineering Journal, 2016, 284: 679- 686
doi: 10.1016/j.cej.2015.09.009
|
40 |
刘军. 基于湿法再生的CO2吸附材料性能及应用研究[D]. 杭州: 浙江大学, 2016: 46. LIU Jun. Research on performance of CO2 adsorption materials and utilization based on moisture swing technology [D]. Hangzhou: Zhejiang University, 2016
|
41 |
吴禹松. 用于空气二氧化碳捕集的多孔树脂吸附剂成型及性能研究[D]. 杭州: 浙江大学, 2020: 46. WU Yu-song. Research on formation and performance of porous resin adsorbent for direct air capture of CO2 [D]. Hangzhou: Zhejiang University, 2020.
|
42 |
孙轶敏, 王涛, 刘军, 等 湿法再生吸附剂制备及用于大气CO2的直接捕集 [J]. 环境工程学报, 2014, 8 (4): 1567- 1572 SUN Yi-min, WANG Tao, LIU Jun, et al Preparation of moisture swing adsorbent and performance test for CO2 capture from ambient air [J]. Chinese Journal of Environmental Engineering, 2014, 8 (4): 1567- 1572
|
43 |
徐锶瑶, 侯成龙, 王涛 季铵型变湿再生材料CO2吸附热量迁移研究 [J]. 能源工程, 2021, (1): 54- 62 XU Si-yao, HOU Cheng-long, WANG Tao The heat transfer of quaternary ammonium resin materials in the adsorption process[J]. Energy Engineering, 2021, (1): 54- 62
|
44 |
ZHAO R, LIU L, ZHAO L, et al Thermodynamic exploration of temperature vacuum swing adsorption for direct air capture of carbon dioxide in buildings[J]. Energy Conversion and Management, 2019, 183: 418- 426
doi: 10.1016/j.enconman.2019.01.009
|
45 |
ZHU X, GE T, YANG F, et al Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110651
doi: 10.1016/j.rser.2020.110651
|
46 |
RAHIMI, M, CATALINI G, PUCCINI M, et al Bench-scale demonstration of CO2 capture with an electrochemically driven proton concentration process [J]. RSC Advances, 2020, 10 (29): 16832- 16843
doi: 10.1039/D0RA02450C
|
47 |
STAMPI-BOMBELLI V, SPEK M, MAZZOTTI M Analysis of direct capture of CO2 from ambient air via steam-assisted temperature-vacuum swing adsorption [J]. Adsorption, 2020, 26 (7): 1183- 1197
doi: 10.1007/s10450-020-00249-w
|
48 |
SINHA A, DARUNTE L A, JONES C W, et al Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents [J]. Industrial and Engineering Chemistry Research, 2017, 56 (3): 750- 764
doi: 10.1021/acs.iecr.6b03887
|
49 |
CHAIKITTISILP W, KIM H-J, JONES C W Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air [J]. Energy and Fuels, 2011, 25 (11): 5528- 5537
doi: 10.1021/ef201224v
|
50 |
SAKWA-NOVAK M A, JONES C W Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air [J]. ACS Applied Materials and Interfaces, 2014, 6 (12): 9245- 9255
doi: 10.1021/am501500q
|
51 |
WANG T, LACKNER K S, WRIGHT A Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science and Technology, 2011, 45 (15): 6670- 6675
doi: 10.1021/es201180v
|
52 |
QUINN R, APPLEBY J B, PEZ G P Salt hydrates: new reversible absorbents for carbon dioxide[J]. Journal of the American Chemical Society, 1995, 117 (1): 329- 335
doi: 10.1021/ja00106a035
|
53 |
WANG T, GE K, CHEN K, et al Theoretical studies on CO2 capture behavior of quaternary ammonium-based polymeric ionic liquids [J]. Physical Chemistry Chemical Physics, 2016, 18 (18): 13084- 13091
doi: 10.1039/C5CP07229H
|
54 |
WANG T, HOU C, GE K, et al Spontaneous cooling absorption of CO2 by a polymeric ionic liquid for direct air capture [J]. Journal of Physical Chemistry Letters, 2017, 8 (1): 3986- 3990
|
55 |
WANG T, LIU J, LACKNER K S, et al Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent [J]. Greenhouse Gases: Science and Technology, 2016, 6 (1): 138- 149
doi: 10.1002/ghg.1535
|
56 |
SHI X, LI Q, WANG T, et al Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air [J]. PLoS One, 2017, 12 (6): 1- 12
|
57 |
ARMSTRONG M, SHI X, SHAN B, et al Rapid CO2 capture from ambient air by sorbent-containing porous electrospun fibers made with the solvothermal polymer additive removal technique [J]. AIChE Journal, 2019, 65 (1): 214- 220
doi: 10.1002/aic.16418
|
58 |
WU D C, XU F, SUN B, et al Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112 (7): 3959- 4015
doi: 10.1021/cr200440z
|
59 |
WANG T, WANG X R, HOU C L, et al Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air [J]. Scientific Reports, 2020, 10 (1): 21429
doi: 10.1038/s41598-020-77477-1
|
60 |
SONG J, LIU J, ZHAO W, et al Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air [J]. Industrial and Engineering Chemistry Research, 2018, 57 (14): 4941- 4948
doi: 10.1021/acs.iecr.8b00064
|
61 |
HOU C L, WU Y S, WANG T, et al Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2[J]. Energy Fuels, 2019, 33 (3): 1745- 1752
doi: 10.1021/acs.energyfuels.8b02821
|
62 |
KEITH D W, HOLMES G, ST ANGELO D, et al A process for capturing CO2 from the atmosphere [J]. Joule, 2018, 2 (10): 1573- 1594
|
63 |
GEBALD C, WURZBACHER J A, TINGAUT P, et al Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air [J]. Environmental Science and Technology, 2011, 45 (20): 9101- 9108
doi: 10.1021/es202223p
|
64 |
VáZQUEZ F V, KOPONEN J, RUUSKANEN V, et al Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept[J]. Journal of CO2 Utilization , 2018, 28: 235- 246
doi: 10.1016/j.jcou.2018.09.026
|
65 |
SADIQ M M, BATTEN M P, MULET X, et al A pilot-scale demonstration of mobile direct air capture using metal-organic frameworks[J]. Advanced Sustainable Systems, 2020, 4 (12): 2000101
doi: 10.1002/adsu.202000101
|
66 |
WIJESIRI R P, KNOWLES G P, YEASMIN H, et al Desorption process for capturing CO2 from air with supported amine sorbent [J]. Industrial and Engineering Chemistry Research, 2019, 58 (34): 15606- 15618
doi: 10.1021/acs.iecr.9b03140
|
67 |
CHOI S, DRESE J, EISENBERGER P, et al. A new paradigm of anthropogenic CO2 reduction: adsorptive fixation of CO2 from the ambient air as a carbon negative technology [C]// 2009 AIChE Annual Meeting. Nashville: [s. n.], 2009: 385-390.
|
68 |
YU Q, BRILMAN W A radial flow contactor for ambient air CO2 capture [J]. Applied Sciences, 2020, 10 (3): 1080
doi: 10.3390/app10031080
|
69 |
HOU C L, WU Y S, JIAO Y Z, et al Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption [J]. Journal of Zhejiang University: Science A, 2017, 18 (10): 819- 830
doi: 10.1631/jzus.A1700351
|
70 |
DAGGASH H A, PATZSCHKE C F, HEUBERGER C F, et al Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture[J]. Sustainable Energy and Fuels, 2018, 2 (6): 1153- 1169
doi: 10.1039/C8SE00061A
|
71 |
KREKEL D, SAMSUN R C, PETERS R, et al The separation of CO2 from ambient air: a techno-economic assessment [J]. Applied Energy, 2018, 218: 361- 381
doi: 10.1016/j.apenergy.2018.02.144
|
72 |
FASIHI M, EFIMOVA O, BREYER C Techno-economic assessment of CO2 direct air capture plants [J]. Journal of Cleaner Production, 2019, 224: 957- 980
doi: 10.1016/j.jclepro.2019.03.086
|
73 |
SAGUES W J, PARK S, JAMEEL H, et al Enhanced carbon dioxide removal from coupled direct air capture-bioenergy systems[J]. Sustainable Energy and Fuels, 2019, 3 (11): 3135- 3146
doi: 10.1039/C9SE00384C
|
74 |
WIJESIRI R P, KNOWLES G P, YEASMIN H, et al Technoeconomic evaluation of a process capturing CO2 directly from air [J]. Processes, 2019, 7 (8): 503
doi: 10.3390/pr7080503
|
75 |
ABANADES J C, CRIADO Y A, FERNáNDEZ J R An air CO2 capture system based on the passive carbonation of large Ca(OH)2 structures [J]. Sustainable Energy and Fuels, 2020, 4 (7): 3409- 3417
doi: 10.1039/D0SE00094A
|
76 |
MCQUEEN N, PSARRAS P, PILORGE H, et al Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the united states[J]. Environmental Science and Technology, 2020, 54 (12): 7542- 7551
doi: 10.1021/acs.est.0c00476
|
77 |
VAN DER GIESEN C, MEINRENKEN C J, KLEIJN R, et al A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture [J]. Environmental Science and Technology, 2017, 51 (2): 1024- 1034
|
78 |
GENG Y, LI C, CAO Y, et al Cost analysis of air capture driven by wind energy under different scenarios[J]. Journal of Modern Power Systems and Clean Energy, 2015, 4 (2): 275- 281
|
79 |
ZEMAN F Reducing the cost of Ca-based direct air capture of CO2[J]. Environmental Science and Technology, 2014, 48 (19): 11730- 11735
|
80 |
SOCOLOW R, DESMOND M, AINES R, et al. Direct air capture of CO2 with chemicals: a technology assessment for the aps panel on public affairs [R]. [S.l.]: American Physical Society, 2011.
|
81 |
KULKARNI A R, SHOLL D S Analysis of equilibrium-based TSA processes for direct capture of CO2 from air [J]. Industrial and Engineering Chemistry Research, 2012, 51 (25): 8631- 8645
doi: 10.1021/ie300691c
|
82 |
DEUTZ S, BARDOW A Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption[J]. Nature Energy, 2021, 6 (2): 203- 213
doi: 10.1038/s41560-020-00771-9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|