Please wait a minute...
浙江大学学报(工学版)
化学工程与生物工程     
湿式除尘器内部湍流场与粒子轨迹的数值分析
宁致远, 沈欣军, 李树然, 闫克平
1. 浙江大学 化学工程与生物工程学院 工业生态与环境研究所,浙江 杭州,310028
2. 沈阳工业大学 理学院,辽宁 沈阳 110870
Numerical analysis of turbulence field and particle trajectory inside wet Electrostatic Precipitator
NING Zhi yuan, SHEN Xin jun, LI Shu ran, YAN Ke ping
1. Industrial Ecology and Environment Research Institute, Zhejiang University, Hangzhou 310007, China;
2. School of Science, Shenyang University of Technology, Shenyang 110870, China
 全文: PDF(8868 KB)   HTML
摘要:

利用有限元多物理场耦合的方法,对湿式电除尘器内部的整体流场进行可视化分析,并指出耦合后流场对不同粒径颗粒运动轨迹以及收尘效率的影响.结果表明,在施加电场后,除尘器内的一次流在电流体(EHD)和壁面水膜流动的混合情况下产生了明显扰动.表现为在低流速的情况下,电晕线前后产生明显的涡旋.而在加入壁面水流的条件下,流场变得更加复杂,显现出明显的三维运动趋势.同时,流场的改变也使得颗粒物的运动轨迹变得复杂,相对来说,细颗粒物的运动轨迹更易受到流场变化的影响.

Abstract:

Finite element and multiphysics coupling methods were applied to visually analyze the flow pattern inside wet Electrostatic Precipitator (WESP). This work also obtained the trajectory of particle in different diameters and particle collection efficiency under various flow situations. Results suggest that, after high electric field was applied, the Electrohydrodynamic (EHD) flow has significant influence on primary flow, creating vortices before and after each discharge wire, especially when primary flow at a slow velocity. The moving wall function (to simulate the water flow inside WESP) makes inner flow pattern more complex and showing an obvious three-dimensional tendency. Meanwhile, the particle trajectory is also altered under given situation. Relatively, the trajectory of fine particles is more easily affected by altered primary flow.

出版日期: 2017-03-06
CLC:  X 513  
基金资助:

国家“863”高技术研究发展计划资助项目(2013AA065000);浙江省重点科技创新团队计划资助项目(2013TD07)

通讯作者: 闫克平,男,教授.ORCID∶0000-0002-8218-8793     E-mail: kyan@zju.edu.cn
作者简介: 宁致远(1988—),男,博士,从事电除尘器和PIV相关等研究.ORCID∶0000-0002-3956-321X. E-mail: Zhiyuan_Ning@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

宁致远, 沈欣军, 李树然, 闫克平. 湿式除尘器内部湍流场与粒子轨迹的数值分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.02.022.

NING Zhi yuan, SHEN Xin jun, LI Shu ran, YAN Ke ping. Numerical analysis of turbulence field and particle trajectory inside wet Electrostatic Precipitator. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.02.022.

[1] YAMAMOTO T, VELKOFF H R. Electrohydrodynamics in an electrostatic precipitator[J]. Journal of Fluid Mechanics, 2006, 108: 118.
[2] KALLIO G A, STOCK D E. Flow visualization inside a wireplate electrostatic precipitator[J]. IEEE Transactions on Industry Applications,1990, 26(3): 503-514.
[3] PODLINSKI J, NIEWULIS A., MIZERACZYK J, et al. ESP performance for various dust densities[J]. Journal of Electrostatics, 2008, 66: 246-253.
[4] NIEWULIS A., PODLISKI J, MIZERACZYK J. Electrohydrodynamic flow patterns in a narrow electrostatic precipitator with longitudinal or transverse wire electrode[J]. Journal of Electrostatics, 2009, 67: 123-127.
[5] PODLISKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator[J]. Journal of Electrostatics, 2009, 67(2/3): 99-104.
[6] DAVIS J L, HOBURG J F. Wire-duct precipitator field and charge computation using finite element and characteristics methods [J]. Journal of Electrostatics, 1983, 14(2): 187-199.
[7] AL-HAMOUZ Z M. A combined algorithm based on finite elements and a modified method of characteristics for the analysis of the corona in wire-duct electrostatic precipitators [J]. IEEE Transactions on Industry Applications, 2002, 38(1): 43-49.
[8] ZHAO L, ADAMIAK K. Numerical Simulation of the Electrohydrodynamic Flow in a Single WirePlate Electrostatic Precipitator [J]. IEEE Transactions on Industry Applications, 2008, 44(3): 683-691.
[9] ELMOURSI A A, CASTLE G S P. Modeling of corona characteristics in a wire-duct precipitator using the charge simulation technique[J]. IEEE Transactions on Industry Applications, 1987, IA23(1):95-102.
[10] LEVIN P L, HOBURG J F. Donor cell-finite element descriptions of wire-duct precipitator fields, charges, and efficiencies [J]. IEEE Transactions on Industry Applications, 1990, 26(4): 662-670.
[11] ANAGNOSTOPOULOS J, BERGELES G. Corona discharge simulation in wire-duct electrostatic precipitator[J]. Journal of Electrostatics, 2002, 54(2):129-147.
[12] SOLDATI A. ON The effects of electrohy drodynamic flows and turbulence on aerosol transport and collection in wireplate electrostatic precipita tors [J]. Journal of Aerosol Science, 2000, 31(3): 293-305.
[13] SKODRAS G, KALDIS S P, SOFIALIDIS D, et al. Particulate removal via electrostatic precipitators — CFD simulation [J]. Fuel Processing Technology, 2006, 87(7): 623-631.
[14] MIZUNO A. Electrostatic precipitation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(5): 615-624.
[15] WILCOX D C. Turbulence modeling for CFD[M]. 1st edition. \[S.l\]: DCW Industries, 1993.
[16] VAN WACHEM B G M, SCHOUTEN J C, VAN DEN BLEEK C M, et al. Comparative analysis of CFD models of dense gas-solid systems [J]. AIChE Journal, 2001, 47(5): 1035-1051.
[17] ENWALD H, PEIRANO E, ALMSTEDT A E. Eulerian two-phase flow theory applied to fluidization[J]. International Journal of Multiphase Flow, 1996, (22): 21-66.
[18] PODLINSKI J, NIEWULIS A, MIZERACZYK J. Electrohydrodynamic flow in a wire-plate non-thermal plasma reactor measured by 3D PIV method [J]. The European Physical Journal D, 2009, 54(2):153-158.
[19] SHEN X, ZHENG Q, NING Z, et al. PM 10 and PM 2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants IV: investigations on electrostatic precipitation by means of 2D PIV Technique[J]. Science & Technology Review, 2014, 32(33):43-50.

[1] 王浩霖,骆仲泱,赫明春,沈丹. 烟气成分对静电除尘器放电特性的影响[J]. 浙江大学学报(工学版), 2020, 54(12): 2336-2343.
[2] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[3] 曾宇翾, 沈欣军, 章旭明, 刘振,闫克平. 电除尘器中离子风的实验研究[J]. J4, 2013, 47(12): 2208-2211.
[4] 金晗辉, 李清平, 陈丽华, 樊建人, 吕琳. 室内悬浮颗粒物分布及输运特性的实验研究[J]. J4, 2010, 44(9): 1793-1797.