Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (7): 1282-1290    DOI: 10.3785/j.issn.1008-973X.2019.07.006
机械与能源工程     
荷电液滴联合声波捕集颗粒物的过程和特性
刘舒昕(),骆仲泱*(),鲁梦诗,赫明春,方梦祥,王浩霖
浙江大学 能源工程学院,浙江 杭州 310027
Process and characteristics of capture of particles by charged droplet and acoustic waves
Shu-xin LIU(),Zhong-yang LUO*(),Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1557 KB)   HTML
摘要:

搭建显微可视化平台,观测以半山电厂灰为代表的颗粒物在电场及声场作用下相对于悬垂荷电单液滴的运动和捕集特性,利用激光粒度仪对颗粒物的凝并效果进行验证. 实验结果显示:对液滴进行荷电,可以将以惯性捕集为主要作用的灰颗粒绕流运动变为以静电力(介电泳力、库仑力)为主导的吸引作用,颗粒物在液滴表面的沉积状态由树枝状变为紧密堆积状态,而增加声场后,在颗粒初始轨迹之上叠加了往复的振动. 荷电液滴引入的静电力和液桥力强化了团聚体内部的黏附作用. 进一步的粒径分布表征实验发现,荷电液滴和声波的加入均可以有效促进颗粒的团聚长大.

关键词: 荷电液滴声场运动轨迹捕集团聚    
Abstract:

A microscopic visualization system was constructed to observe the movement and capture of particles around a charged single droplet under electric and acoustic field. Ash from Banshan Power Plant was used as representative particles. A laser particle size analyzer was used to verify the effect of agglomeration. The experimental results show that the inertial capture can be changed to attraction dominated by electrostatic forces (dielectrophoretic force, Coulomb force) by charging the droplet, and particle deposition on the surface of droplet changes from dendritic to tightly stacked. The trajectories of particles show reciprocating vibrations when adding acoustic field. The electrostatic force and liquid bridge force introduced by the charged droplets can enhance the internal adhesion of agglomerates. Further particle size distribution experiments show that both charged droplets and sound waves can effectively promote the agglomeration of particles.

Key words: charged droplet    acoustic field    trajectory    capture    agglomeration
收稿日期: 2018-09-12 出版日期: 2019-06-25
CLC:  TB 89  
通讯作者: 骆仲泱     E-mail: liusx@zju.edu.cn;zyluo@zju.edu.cn
作者简介: 刘舒昕(1993—),女,硕士生,从事PM2.5控制的研究. orcid.org/0000-0002-4314-3648. E-mail: liusx@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘舒昕
骆仲泱
鲁梦诗
赫明春
方梦祥
王浩霖

引用本文:

刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.

Shu-xin LIU,Zhong-yang LUO,Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG. Process and characteristics of capture of particles by charged droplet and acoustic waves. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1282-1290.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.006        http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1282

图 1  颗粒运动可视化系统
图 2  颗粒物粒径变化表征实验系统
图 3  可视化实验中的悬垂液滴
图 4  粒径表征实验中灰颗粒和液滴的初始粒径
图 5  液滴和灰颗粒均不荷电情况下颗粒的运动轨迹及沉积形貌
图 6  液滴和灰颗粒单方荷电情况下颗粒的运动轨迹及沉积形貌
图 7  液滴和灰颗粒荷异种电荷情况下颗粒的运动轨迹及沉积形貌
图 8  仅声波作用下颗粒的运动轨迹及沉积形貌
图 9  电声联合作用下颗粒的运动轨迹及沉积形貌
图 10  荷电工况下颗粒物粒径变化
图 11  电声联合作用下颗粒物粒径变化
图 12  颗粒原始粒径峰占比及中值粒径变化
图 13  范德华力和液桥力对比
1 姜磊, 周海峰, 赖志柱, 等 中国城市PM2.5时空动态变化特征分析: 2015-2017年 [J]. 环境科学学报, 2018, 38 (10): 3816- 3825
JIANG Lei, ZHOU Hai-feng, LAI Zhi-zhu, et al Analysis of spatio-temporal characteristic of PM2.5 concentrations of Chinese cities: 2015-2017 [J]. Acta Scientiae Circumstantiae, 2018, 38 (10): 3816- 3825
2 喻峥嵘, 杨春 雾霾天气对交通运输的影响及应对措施[J]. 科技视界, 2016, (07): 245+257
YU Zheng-rong, YANG Chun Influence of haze weather on transportation and its countermeasures[J]. Science and Technology Vision, 2016, (07): 245+257
3 李丽珍, 曹露, 王磊, 等 谈中国PM2.5的污染来源及危害 [J]. 能源与节能, 2013, (04): 77- 78
LI Li-zhen, CAO Lu, WANG Lei, et al On the pollution sources and hazards of PM2.5 in China [J]. Energy and Energy Conservation, 2013, (04): 77- 78
doi: 10.3969/j.issn.2095-0802.2013.04.034
4 王银生, 王英敏 静电喷雾除尘适于微细粉尘的理论分析[J]. 东北大学学报, 1996, 17 (03): 79- 82
WANG Yin-sheng, WANG Ying-min Theoretical analysis of electrostatic spray used for fine dust removal[J]. Journal of Northeastern University, 1996, 17 (03): 79- 82
5 BALACHANDRAN W, JAWOREK A, KRUPA A, et al Efficiency of smoke removal by charged water droplets[J]. Journal of Electrostatics, 2003, 58 (3/4): 209- 220
6 JAWOREK A, KRUPA A, SOBCZYK A T, et al Submicron particles removal by charged sprays[J]. Journal of Electrostatics, 2013, 71 (3): 345- 350
doi: 10.1016/j.elstat.2012.11.028
7 蔡萌, 程道来, 胡惠敏, 等 不同粒径分布粉煤灰声团聚的最佳频率[J]. 工业安全与环保, 2017, 43 (04): 52- 55
CAI Meng, CHENG Dao-lai, HU Hui-min, et al Optimal frequency of acoustic agglomeration of fly ash with different particle size distribution[J]. Industrial Safety and Environmental Protection, 2017, 43 (04): 52- 55
doi: 10.3969/j.issn.1001-425X.2017.04.015
8 王洁, 张光学, 刘建忠, 等 种子颗粒对声波团聚效率的影响[J]. 化工学报, 2011, 62 (02): 355- 361
WANG Jie, ZHANG Guang-xue, LIU Jian-zhong, et al Effect of seed particles on acoustic agglomeration efficiency[J]. Journal of Chemical Industry and Engineering, 2011, 62 (02): 355- 361
9 康豫博, 朱益佳, 蔺锋, 等 超细颗粒物超声波团聚的影响因素[J]. 上海交通大学学报, 2016, 50 (04): 551- 556
KANG Yu-bo, ZHU Yi-jia, LIN Feng, et al Influencing factors of acoustic agglomeration of ultrafine particles[J]. Journal of Shanghai Jiaotong University, 2016, 50 (04): 551- 556
10 左子文. 荷电液滴捕集颗粒物机理和特性的研究[D]. 镇江: 江苏大学, 2016.
ZUO Zi-wen. Study on Mechanism and characteristics of Charged droplet used for particulate matter capture [D]. Zhenjiang: Jiangsu University, 2016.
11 KIM J H, LEE H S, KIM H H, et al Electrospray with electrostatic precipitator enhances fine particles collection efficiency[J]. Journal of Electrostatics, 2010, 68 (4): 305- 310
doi: 10.1016/j.elstat.2010.03.002
12 MARKAUSKAS D, MAKNICKAS A, KA?IANAUSKAS R Simulation of acoustic particle agglomeration in poly-dispersed aerosols[J]. Procedia Engineering, 2015, 102: 1218- 1225
doi: 10.1016/j.proeng.2015.01.249
13 SARABIA R F D, GALLEGO-JUáREZ J A, ACOSTA- APARICIO V M, et al Acoustic agglomeration of submicron particles in diesel exhausts: first results of the influence of humidity at two acoustic frequencies[J]. Journal of Aerosol Science, 2000, 31: 827- 828
doi: 10.1016/S0021-8502(00)90837-1
14 左子文, 王军锋, 霍元平, 等 细颗粒物撞击荷电液滴的研究[J]. 中国科学院大学学报, 2017, 34 (02): 259- 264
ZUO Zi-wen, WANG Jun-feng, HUO Yuan-ping, et al Study of fine particles impacting a pendant charged droplet[J]. Journal of University of Chinese Academy of Sciences, 2017, 34 (02): 259- 264
15 SUMIYOSHITANI S, OKADA T, HARA M, et al Direct observation of the collection process for dust particles from an air stream by a charged water droplet[J]. IEEE Transactions on Industry Applications, 1984, (2): 274- 281
16 张光学, 朱颖杰, 周涛涛, 等 喷雾对促进细颗粒物声波团聚的影响[J]. 化工学报, 2017, 68 (03): 864- 869
ZHANG Guang-xue, ZHU Ying-jie, ZHOU Tao-tao, et al Improve acoustic agglomeration of fine particles by droplet spray[J]. Journal of Chemical Industry and Engineering, 2017, 68 (03): 864- 869
17 黄斌, 姚强, 赵海亮, 等 飞灰在单纤维上形成颗粒链的生长和形貌[J]. 清华大学学报: 自然科学版, 2006, (05): 662- 665
HUANG Bin, YAO Qiang, ZHAO Hai-liang, et al Growth and morphosis of particle chains during fly ash loading on a single fiber[J]. Journal of Tsinghua University: Science and Technology, 2006, (05): 662- 665
18 郭硕鸿. 电动力学[M]. 3版. 北京: 高等教育出版社, 2008: 53–54.
19 唐敏康 电除尘器中亚微粒子凝并机理的研究[J]. 工业安全与防尘, 1995, (06): 1- 5
TANG Min-kang Study on the mechanism of submicron particle coagulation in electrostatic precipitator[J]. Industrial Safety and Dust Control, 1995, (06): 1- 5
20 VOLK M, MOROZ W J Sonic agglomeration of aerosol particles[J]. Water Air and Soil Pollution, 1976, 5 (3): 319- 334
21 ZHOU D, LUO Z, JIANG J, et al Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment[J]. Powder Technology, 2016, 289: 52- 59
doi: 10.1016/j.powtec.2015.11.009
22 SEVILLE J P K, WILLETT C D, KNIGHT P C Interparticle forces in fluidisation: a review[J]. Powder Technology, 2000, 113 (3): 261- 268
doi: 10.1016/S0032-5910(00)00309-0
23 GUTFINGER C Aerosol measurement: principles, techniques, and applications[J]. International Journal of Multiphase Flow, 1993, 22 (22): 807- 808
24 NOORPOOR A R, SADIGHZADEH A, HABIBNEJAD H Influence of acoustic waves on deposition and coagulation of fine particles[J]. International Journal of Environmental Research, 2013, 7 (1): 131- 138
25 GALLEGO-JUAREZ J A, DE SARABIA E R F, RODRIGUEZ-COEEAL G, et al Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants[J]. Environmental Science and Technology, 1999, 33 (21): 3843- 3849
doi: 10.1021/es990002n
26 MARSHALL J S, LI S. Adhesive particle flow [M]. New York: Cambridge University Press, 2014.
[1] 赵楠楠,胡亮,毛凯,陈文昱,傅新. 超声波体积流量计声场混合计算方法[J]. 浙江大学学报(工学版), 2020, 54(8): 1466-1473.
[2] 郑帅,谭大鹏,李霖,朱吟龙. 微反应器计算流体力学与离散元建模及调控[J]. 浙江大学学报(工学版), 2019, 53(7): 1237-1251.
[3] 王亚飞,黄群星,王飞,池涌,严建华. 颗粒团聚过程准确碰撞检测快速算法[J]. 浙江大学学报(工学版), 2019, 53(6): 1148-1156.
[4] 武二永,韩烨,李立强,邓双,杨克己. 大尺寸板状构件超声阵列悬浮技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2058-2066.
[5] 杨金垚, 方梦祥, 岑旗钢, 王涛, 何卉. 活性炭捕集燃煤烟气中二氧化碳的模拟分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2142-2149.
[6] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[7] 何宾, 肖新标, 周信, 金学松. 声屏障插入损失影响因素及降噪机理研究[J]. 浙江大学学报(工学版), 2017, 51(4): 761-770.
[8] 许希, 徐甸, 严佩, 朱唯卓, 郑成航, 高翔, 骆仲泱, 倪明江, 岑可法. 高温线板式静电除尘器颗粒捕集[J]. 浙江大学学报(工学版), 2017, 51(3): 487-493.
[9] 周栋, 骆仲泱, 鲁梦诗, 赫明春, 陈浩, 方梦祥. 单分散气溶胶的声波团聚实验[J]. 浙江大学学报(工学版), 2017, 51(2): 358-362.
[10] 沈忠良,邓凯,王明晓,钟英杰. 声场频率与振幅对火焰NOx生成特性的影响[J]. 浙江大学学报(工学版), 2015, 49(11): 2198-2204.
[11] 方奕栋, 楼狄明, 胡志远, 谭丕强. 连续再生颗粒捕集器对生物柴油发动机颗粒及NOx排放的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1836-1841.
[12] 张红虎,谢辉. 评价室内汉语清晰度中STI计权方法适用性检验[J]. J4, 2012, 46(3): 463-469.
[13] 计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春. 软性磨粒流加工方法及近壁区域特性[J]. J4, 2012, 46(10): 1764-1772.
[14] 张红虎, 张三明. 镜面与扩散反射界面球形空间语言清晰度比较[J]. J4, 2010, 44(4): 812-818.
[15] 任聪静, 王靖岱, 阳永荣. 双峰聚乙烯颗粒临界流化速度的研究任[J]. J4, 2009, 43(09): 1687-1691.