Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (6): 1148-1156    DOI: 10.3785/j.issn.1008-973X.2019.06.014
机械与能源工程     
颗粒团聚过程准确碰撞检测快速算法
王亚飞(),黄群星*(),王飞,池涌,严建华
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
High-speed algorithm for accurate collision detection during particle aggregation
Ya-fei WANG(),Qun-xing HUANG*(),Fei WANG,Yong CHI,Jian-hua YAN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1519 KB)   HTML
摘要:

碰撞检测的传统算法在应对大量颗粒碰撞团聚时往往执行效率低下,为此提出一种基于“包围球-最大检测区域”预处理的两步式准确碰撞检测快速算法. 粗略筛选阶段:所有团聚体用更新成本低的包围球替代表示,并将包围球间的碰撞检测转变为求解关于时间的一元二次方程问题,通过并行求解这些方程快速筛选出所有可能发生的碰撞;忽略最大检测区域外的碰撞检测以进一步缩短执行时间. 精细确定阶段:采用离散碰撞检测快速确定碰撞发生的具体时间和位置;在该阶段,采样时间间隔是自适应的且逐渐减小. 将模拟计算结果与未优化的传统算法结果进行对比后发现,在满足相同碰撞检测准确性的前提下,提出的算法将执行效率提升了10~30倍,表明此算法更加适用于大量颗粒团聚过程中的碰撞检测.

关键词: 颗粒团聚碰撞检测包围球最大检测区域    
Abstract:

The traditional algorithms of collision detection often have poor execution efficiency in dealing with the aggregation following collision of a large number of particles. Therefore, a two-step, fast and accurate algorithm of collision detection was proposed based on the pretreatment of bounding sphere and maximum detection region. In the broad phase, all aggregates were represented by bounding spheres with low update cost. The detection of collisions between bounding spheres was converted into solving the problem of quadratic equations regarding time, and all possible collisions were detected fast by solving these equations parallelly. The detection of collisions outside the maximum detection region was ignored to further reduce execution time. In the narrow phase, the specific time and position of collisions were rapidly determined by discrete collision detection, where sampling time intervals were self-adaptive and decreasing. Simulation results were compared with those by non-optimized traditional algorithms, and it was found that, on the premise of meeting the same accuracy of collision detection the algorithm proposed here could increase the execution efficiency 10 to 30 times, indicating that this algorithm is more applicable to collision detection during the aggregation process of a large number of particles.

Key words: particle aggregation    collision detection    bounding sphere    maximum detection region
收稿日期: 2018-11-12 出版日期: 2019-05-22
CLC:  TP 391  
通讯作者: 黄群星     E-mail: wangyafei@zju.edu.cn;hqx@zju.edu.cn
作者简介: 王亚飞(1987—),男,博士生,从事火焰中碳黑颗粒研究. orcid.org/0000-0002-3585-7237. E-mail: wangyafei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王亚飞
黄群星
王飞
池涌
严建华

引用本文:

王亚飞,黄群星,王飞,池涌,严建华. 颗粒团聚过程准确碰撞检测快速算法[J]. 浙江大学学报(工学版), 2019, 53(6): 1148-1156.

Ya-fei WANG,Qun-xing HUANG,Fei WANG,Yong CHI,Jian-hua YAN. High-speed algorithm for accurate collision detection during particle aggregation. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1148-1156.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.06.014        http://www.zjujournals.com/eng/CN/Y2019/V53/I6/1148

图 1  团聚体的包围球示意图
图 2  已耗时间与剩余时间的图例说明
图 3  MCR和MDR的构造关系
图 4  发生碰撞的两包围球的几何关系
图 5  包围球相交区域内颗粒间的碰撞检测
序号 预处理 主过程
算法 1 DCD (△t自适应且可变)
算法 2 AABB DCD (△t自适应且可变)
算法 3 BS+MDR CCD+DCD (△t自适应且可变)
表 1  两种传统算法和新算法的技术对比
图 6  层流乙烯扩散火焰中轴线处碳黑基础颗粒团聚过程
图 7  火焰中轴线处碳黑基础颗粒碰撞团聚过程的
图 9  碳黑团聚体分形参数的实验确定值和模拟值
图 8  模拟碳黑团聚体与实验捕捉到的真实碳黑团聚体的形态结构比较
图 10  不同火焰高度上碳黑团聚体中基础颗粒平均数的模拟值和实验确定值对比
图 11  3种算法碰撞检测执行时间和效率的对比
图 12  当算法1或2与算法3所需的执行时间一致时采用算法1和2模拟得到的团聚体
1 KUSAKA Y, FUKASAWA T, ADACHIA Y Cluster-cluster aggregation simulation in a concentrated suspension[J]. Journal of Colloid and Interface Science, 2011, 363: 34- 41
doi: 10.1016/j.jcis.2011.07.024
2 WANG Y F, HUANG Q X, WANG F, et al Brownian dynamics simulation of soot primary particle aggregation in laminar ethylene diffusion flames[J]. Physica A, 2019, 514: 936- 947
doi: 10.1016/j.physa.2018.09.119
3 张忠辉, 丑武胜 可变形物体间的精确碰撞检测方法研究[J]. 计算机工程与应用, 2009, 45 (1): 176- 178
ZHANG Zhong-hui, CHOU Wu-sheng Research on precise collision detection between deformable objects[J]. Computer Engineering and Applications, 2009, 45 (1): 176- 178
doi: 10.3778/j.issn.1002-8331.2009.01.054
4 于瑞云, 赵金龙, 余龙, 等 结合轴对齐包围盒和空间划分的碰撞检测算法[J]. 中国图像图形学报, 2018, 23 (12): 1925- 1937
YU Rui-yun, ZHAO Jin-long, YU Long, et al Collision detection algorithm based on AABB bounding box and space division[J]. Journal of Image and Graphics, 2018, 23 (12): 1925- 1937
5 孙劲光, 吴素红 基于空间分割与椭球包围盒的碰撞检测算法[J]. 计算机工程与应用, 2016, 52 (4): 217- 222
SUN Jin-guang, WU Su-hong Collision detection algorithm based on ellipsoid bounding box and spatial decomposition[J]. Computer Engineering and Applications, 2016, 52 (4): 217- 222
doi: 10.3778/j.issn.1002-8331.1405-0105
6 李炎, 卢晓军, 贺汉根 USSCD: 一个基于均匀空间分割的快速碰撞检测算法[J]. 中国图像图形学报, 2003, 8 (12): 1444- 1449
LI Yan, LU Xiao-jun, HE Han-gen USSCD: a fast collision detection algorithm based on uniform spatial subdivision[J]. Journal of Image and Graphics, 2003, 8 (12): 1444- 1449
7 范昭炜, 万华根, 高曙明 基于图像的快速碰撞检测算法[J]. 计算机辅助设计与图形学报, 2002, 14 (9): 805- 810
FAN Zhao-wei, WAN Hua-gen, GAO Shu-ming A fast collision detection algorithm in image space[J]. Journal of Computer-Aided Design and Computer Graphics, 2002, 14 (9): 805- 810
8 邹益胜, 丁国富, 周晓莉, 等 一种基于图像空间的碰撞检测算法[J]. 系统仿真学报, 2011, 23 (5): 944- 949
ZOU Yi-sheng, DING Guo-fu, ZHOU Xiao-li, et al Collision detection algorithm based on image space[J]. Journal of System Simulation, 2011, 23 (5): 944- 949
9 FOSS D R, BRADY J F Brownian dynamics simulation of hard-sphere colloidal dispersions[J]. Journal of Rheology, 2002, 44 (3): 629- 651
10 BANCHIO A J, BERGENHOLTZ J, NAGELE G Rheology and dynamics of colloidal dispersions[J]. Physical Review Letters, 1999, 82: 1792- 1795
doi: 10.1103/PhysRevLett.82.1792
11 CHEN J C, KIM A S Brownian dynamics, molecular dynamics, and Monte Carlo modeling of colloidal systems[J]. Advances in Colloid and Interface Science, 2004, 112: 159- 173
doi: 10.1016/j.cis.2004.10.001
12 WATANABE M, TANAKA D Brownian dynamics simulation of the aggregation of submicron particles in static gas[J]. Computers and Chemical Engineering, 2013, 54: 151- 158
doi: 10.1016/j.compchemeng.2013.03.028
13 DOPERTCHOUK O. Simple bounding-sphere collision detection [EB/OL]. [2019-02-18]. https://www.gamedev.net/articles/programming/math-and-physics/simple-bounding-sphere-collision-detection-r1234.
14 ANDERSON L. Realistic billiards simulation with variable time-step [EB/OL]. [2019-02-18]. https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S09/final_projects/anderson.pdf.
15 黄伟益. 基于GPU并行加速碰撞检测算法的研究 [D]. 重庆: 重庆大学, 2015: 11–29.
HUANG Wei-yi. Research on collision detection algorithm based on GPU parallel speed up [D]. Chongqing: Chongqing University, 2015: 11–29.
16 水泳. 虚拟现实中连续碰撞检测算法研究 [D]. 合肥: 中国科学技术大学, 2013: 2–17.
SHUI Yong. Research on continuous collision detection algorithm in virtual reality [D]. Hefei: University of science and technology of China, 2013: 2–17.
17 DONER N, LIU F S Impact of morphology on the radiative properties of fractal soot aggregates[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187: 10- 19
doi: 10.1016/j.jqsrt.2016.09.005
18 BOURG D M, BYWALEC B. Physics for game developers [M]. 2nd ed. Sebastopol: O’REILLY, 2013.
[1] 郑帅,谭大鹏,李霖,朱吟龙. 微反应器计算流体力学与离散元建模及调控[J]. 浙江大学学报(工学版), 2019, 53(7): 1237-1251.
[2] 李智靖,叶锦华,吴海彬. 基于卷积力矩观测器与摩擦补偿的机器人碰撞检测[J]. 浙江大学学报(工学版), 2019, 53(3): 427-434.
[3] 何雪军, 王进, 陆国栋, 刘振宇, 陈立, 金晶. 基于三角网切片及碰撞检测的工业机器人三维头像雕刻[J]. 浙江大学学报(工学版), 2017, 51(6): 1104-1110.
[4] 钟琮玮, 项基, 韦巍, 张远辉, 陈鹏. 基于扰动观测器的机械手碰撞检测与安全响应[J]. J4, 2012, 46(6): 1115-1121.
[5] 黄通浪 唐敏 董金祥. 一种快速精确的连续碰撞检测算法[J]. J4, 2006, 40(6): 1051-1055.