Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (7): 1291-1297    DOI: 10.3785/j.issn.1008-973X.2019.07.007
机械与能源工程     
CaCl2·6H2O/EG复合相变材料的制备与性能研究
刘旋(),巫江虹*(),鲜婷,冯业
华南理工大学 机械与汽车工程学院,广东 广州 510641
Preparation and properties of CaCl2?6H2O/ expanded graphite composite phase change materials
Xuan LIU(),Jiang-hong WU*(),Ting XIAN,Ye FENG
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
 全文: PDF(1167 KB)   HTML
摘要:

为了改善六水氯化钙的蓄放热性能,以六水氯化钙为相变材料(PCM)、膨胀石墨(EG)为载体、六水氯化锶为成核剂,采用物理吸附法制备六水氯化钙/膨胀石墨复合相变材料,研究复合相变材料的热物理特性. 采用步冷曲线法,研究复合相变材料的过冷度、蓄/放热性能和热循环稳定性;采用扫描电镜、差示扫描量热法、热流计导热仪,对复合相变材料的显微形貌、相变潜热、相变温度、比热容和导热系数进行测定. 结果表明:在六水氯化钙中添加质量分数为10%的膨胀石墨和质量分数为2%的六水氯化锶,复合相变材料的相变潜热为151.6 J/g,导热系数提升至3.328 W/(m·K),过冷度保持在2 °C以内. 相变材料的导热系数及过冷度得到显著改善.

关键词: 六水氯化钙膨胀石墨(EG)相变材料(PCM)过冷导热系数    
Abstract:

A composite phase change materials (PCM) was prepared by physical adsorption method with CaCl2·6H2O as PCM, expanded graphite (EG) as carrier and SrCl2·6H2O as nucleating agent in order to improve the heat storage-release property of CaCl2·6H2O. The thermophysical properties of the PCM were analyzed. The cooling curve was used to analyze the degree of supercooling, the heat storage-release property and thermal cycling stability of the composite PCM. The composite material’s micromorphology, latent heat, phase transition temperature, specific heat and thermal conductivity were measured by using scanning electron microscopy, differential scanning calorimeter and thermal conductivity meter. The experimental results showed that phase change latent heat of the composite PCM was 151.6 J/g by adding 10% mass fraction of EG and 2% mass fraction of SrCl2·6H2O into CaCl2·6H2O, thermal conductivity increased to 3.328 W/(m·K), and the degree of supercooling kept within 2 °C. The thermal conductivity and supercooling of the PCM were significantly improved.

Key words: CaCl2·6H2O    expanded graphite (EG)    phase change material (PCM)    supercooling    thermal conductivity
收稿日期: 2018-05-28 出版日期: 2019-06-25
CLC:  TK 02  
通讯作者: 巫江虹     E-mail: 986347431@qq.com;pmjhwu@scut.edu.cn
作者简介: 刘旋(1995?),男,硕士生,从事太阳能热泵系统的研究. orcid.org/0000-0002-3247-9162. E-mail: 986347431@qq.com|巫江虹,女,教授,博导. orcid.org/0000-0001-5269-6175. E-mail: pmjhwu@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘旋
巫江虹
鲜婷
冯业

引用本文:

刘旋,巫江虹,鲜婷,冯业. CaCl2·6H2O/EG复合相变材料的制备与性能研究[J]. 浙江大学学报(工学版), 2019, 53(7): 1291-1297.

Xuan LIU,Jiang-hong WU,Ting XIAN,Ye FENG. Preparation and properties of CaCl2?6H2O/ expanded graphite composite phase change materials. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1291-1297.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.007        http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1291

图 1  样品热物性表征测试装置示意图
图 2  膨胀石墨吸附能力照片
图 3  复合相变材料扫描电镜图
图 4  纯CaCl2·6H2O步冷曲线
图 5  EG-CaCl2·6H2O-SrCl2·6H2O体系的步冷曲线
图 6  CaCl2·6H2O和CaCl2·6H2O/EG的 DSC曲线
图 7  复合相变材料的比热容曲线
图 8  复合相变材料温度-导热系数曲线
图 9  复合相变材料热扩散系数-温度曲线
图 10  相变材料的蓄放热过程曲线
图 11  复合相变材料的热稳定测试曲线
n θn/°C θm/°C θc/°C
1 26.6 27.4 0.8
20 25.9 27.1 1.2
40 25.5 27.5 2.0
60 26.7 27.2 0.5
80 25.6 27.3 1.7
100 26.5 27.2 0.7
表 1  复合相变材料循环100次冷却相变特性
1 SHARIF M K A, Al-ABIDI A A, MAT S, et al Review of the application of phase change material for heating and domestic hot water systems[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 557- 568
doi: 10.1016/j.rser.2014.09.034
2 CUNHA J P D, EAMES P Thermal energy storage for low and medium temperature applications using phase change materials: a review[J]. Applied Energy, 2016, 177: 227- 238
doi: 10.1016/j.apenergy.2016.05.097
3 MOHAMED S A, Al-SULAIMAN F A, IBRAHIM N I, et al A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072- 1089
doi: 10.1016/j.rser.2016.12.012
4 KOCA A, OZTOP H F, KOYUM T, et al Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector[J]. Renewable Energy, 2008, 33 (4): 567- 574
doi: 10.1016/j.renene.2007.03.012
5 VAROL Y, KOCA A, OZTOP H F, et al Forecasting of thermal energy storage performance of phase change material in a solar collector using soft computing techniques[J]. Expert Systems with Applications, 2010, 37 (4): 2724- 2732
doi: 10.1016/j.eswa.2009.08.007
6 韩宗伟, 王一茹, 阿不来提·依米提, 等 太阳能热泵相变蓄热供暖系统参数影响研究[J]. 太阳能学报, 2015, 36 (8): 2028- 2035
HAN Zong-wei, WANG Yi-ru, ABLAT-Yimit, et al Parameter study of solar assisted heat pump heating system with phase change thermal storage[J]. Acta Energiae Solaris Sinica, 2015, 36 (8): 2028- 2035
doi: 10.3969/j.issn.0254-0096.2015.08.038
7 QU S, MA F, JI R, et al System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage[J]. Energy and Buildings, 2015, 105: 294- 301
doi: 10.1016/j.enbuild.2015.07.040
8 ZHOU G, PANG M Experimental investigations on thermal performance of phase change material: Trombe wall system enhanced by delta winglet vortex generators[J]. Energy, 2015, 93: 758- 769
doi: 10.1016/j.energy.2015.09.096
9 TYAGI V V, PANDEY A K, BUDDHI D, et al Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings[J]. Energy and Buildings, 2016, 117: 44- 52
doi: 10.1016/j.enbuild.2016.01.042
10 徐云龙, 刘栋 六水氯化钙相变材料过冷性质的研究[J]. 材料工程, 2006, (增1): 218- 221
XU Yun-long, LIU Dong Preliminary supercooling research on calcium chloride hexahydrate as phase change material[J]. Journal of Materials Engineering, 2006, (增1): 218- 221
11 刘栋, 徐云龙 成核剂对CaCl2·6H2O相变材料储热性能的影响 [J]. 太阳能学报, 2007, 28 (7): 732- 738
LIU Dong, XU Yun-long Thermoproperties research on uncleators-CaCl2·6H2O composites under distinctive systems [J]. Acta Energiae Solaris Sinica, 2007, 28 (7): 732- 738
doi: 10.3321/j.issn:0254-0096.2007.07.009
12 GU X, NIU J, QIN S. Antarcticite: a phase change material for thermal energy storage–experiments and simulation [C] // Proceedings of the 11th International Congress for Applied Mineralogy (ICAM). Mianyang: China Springer, 2015: 28.
13 LI G, ZHANG B, LI X, et al The preparation, characterization and modification of a new phase change material: CaCl2·6H2O-MgCl2·6H2O eutectic hydrate salt [J]. Solar Energy Materials and Solar Cells, 2014, 126 (1): 51- 55
14 SHAHBAZ K, ALNASHEF I M, LIN R J T, et al A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials[J]. Solar Energy Materials and Solar Cells, 2016, 155: 147- 154
doi: 10.1016/j.solmat.2016.06.004
15 SARI A, KARAIPEKLI A Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27 (8): 1271- 1277
16 张正国, 龙娜, 方晓明 石蜡/膨胀石墨复合相变储热材料的性能研究[J]. 功能材料, 2009, 40 (8): 1313- 1315
ZHANG Zheng-guo, LONG Na, FANG Xiao-ming Study on performance of paraffin/expanded graphite composite phase-change material[J]. Journal of Functional Materials, 2009, 40 (8): 1313- 1315
doi: 10.3321/j.issn:1001-9731.2009.08.021
17 ZHANG Z, ZHANG N, PENG J, et al Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Applied Energy, 2012, 91 (1): 426- 431
doi: 10.1016/j.apenergy.2011.10.014
18 胡小冬, 高学农, 李得伦, 等 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64 (10): 3831- 3837
HU Xiao-dong, GAO Xue-nong, LI De-lun, et al Performance of paraffin/ expanded graphite composite phase change materials[J]. CIESC Journal, 2013, 64 (10): 3831- 3837
19 DUAN Z J, ZHANG H Z, SUN L X, et al CaCl2·6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage [J]. Journal of Thermal Analysis and Calorimetry, 2014, 115 (1): 111- 117
doi: 10.1007/s10973-013-3311-0
20 YE R, LIN W, YUAN K, et al Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material [J]. Applied Energy, 2017, 193: 325- 335
doi: 10.1016/j.apenergy.2017.02.049
21 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009.
22 熊文嘉. 冷却速度及添加物对水合盐过冷度的影响研究[D]. 兰州: 兰州理工大学, 2014.
XIONG Wen-jia. Study on the effects of cooling rate and additives on supercooling degrees of hydrated salts [D]. Lanzhou: Lanzhou University of Technology, 2014.
23 AGYENIM F, HEWITT N, EAMES P, et al A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14 (2): 615- 628
doi: 10.1016/j.rser.2009.10.015
24 WANG J, XIE H, XIN Z Thermal properties of heat storage composites containing multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008, 104 (11): 159
25 WANG J, XIE H, XIN Z Thermal properties of paraffin based composites containing multi-walled carbon nanotubes[J]. Thermochimica Acta, 2009, 488 (1): 39- 42
26 LING Z, CHEN J, XU T, et al Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model ☆[J]. Energy Conversion and Management, 2015, 102: 202- 208
doi: 10.1016/j.enconman.2014.11.040
27 王晓, 丁晴, 姚晓莉, 等 石蜡基碳纳米管复合相变材料的热物性研究[J]. 热科学与技术, 2013, 12 (2): 124- 130
WANG Xiao, DING Qing, YAO Xiao-Li, et al Thermophysical properties of paraffin-based composite phase change materials filled with carbon nanotubes[J]. Journal of Thermal Science and Technology, 2013, 12 (2): 124- 130
doi: 10.3969/j.issn.1671-8097.2013.02.006
28 李新芳, 吴淑英, 朱冬生 碳纳米管/石蜡复合相变储能材料的导热性能研究[J]. 现代化工, 2015, (5): 113- 116
LI Xin-fang, WU Shu-ying, ZHU Dong-sheng Thermal conductivity of CNTs/paraffin phase change composites[J]. Modern Chemical Industry, 2015, (5): 113- 116
[1] 吕洪坤,吴宇豪,冯彦皓,汪明军,俞自涛. 直埋电缆回填土导热系数测试[J]. 浙江大学学报(工学版), 2020, 54(10): 1971-1977.
[2] 周昊,张昆,李亚威,张佳凯. 采用动网格技术的煤粉-玉米秸秆掺烧飞灰沉积数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1139-1147.
[3] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[4] 姚晓莉, 易思阳, 范利武, 徐旭, 俞自涛, 葛坚. 不同孔隙率下含湿加气混凝土的有效导热系数[J]. 浙江大学学报(工学版), 2015, 49(6): 1101-1107.
[5] 丁晴, 方昕, 范利武, 程冠华, 俞自涛, 胡亚才. 混合纳米填料对复合相变材料导热系数的影响[J]. 浙江大学学报(工学版), 2015, 49(2): 330-335.
[6] 王晓,姚晓莉,候鉴峰,范利武,徐旭,俞自涛,胡亚才. 氧化石墨烯水悬浮液的非等温结晶过程[J]. 浙江大学学报(工学版), 2014, 48(7): 1272-1277.
[7] 肖玉麒,范利武,洪荣华,徐旭,俞自涛,胡亚才. 纳米填料对储能式散热器性能影响的数值研究[J]. J4, 2013, 47(9): 1644-1649.
[8] 俞亚南, 徐坚, 冯建江. 粉性土导热系数的室内实验研究[J]. J4, 2010, 44(1): 180-183.
[9] 徐旭 俞自涛 胡亚才 范利武 田甜 岑可法. 木材导热系数非线性拟合的神经网络模型[J]. J4, 2007, 41(7): 1201-1204.
[10] 俞自涛 胡亚才 田甜 范利武. 木材横纹有效导热系数的分形模型[J]. J4, 2007, 41(2): 351-355.
[11] 俞自涛 胡亚才 洪荣华 范利武 黄君丽 方梦祥 岑可法. 温度和热流方向对木材传热特性的影响[J]. J4, 2006, 40(1): 123-125.
[12] 洪荣华 孙志坚 吴杰 陈坤 靳静. 成核添加剂减小冰蓄冷溶液过冷度的实验研究[J]. J4, 2005, 39(11): 1797-1800.