Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1644-1649    DOI: 10.3785/j.issn.1008-973X.2013.09.020
能源工程     
纳米填料对储能式散热器性能影响的数值研究
肖玉麒1,范利武1,洪荣华1,徐旭2,俞自涛1,胡亚才1
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027|2. 中国计量学院 计量测试工程学院,浙江 杭州 310018
Numerical investigation of influence of  nanofillers on performance of energy storage-based heat sink
XIAO Yu-qi1,FAN Li-wu1,HONG Rong-hua1,XU Xu2,YU Zi-tao1,HU Ya-cai1
1. Institute of Thermal Science and Power Systems,Zhejiang University,Hangzhou 310027,China|
2. College of Metrological and Measurement Engineering,China Jiliang University,Hangzhou 310018,China
 全文: PDF  HTML
摘要:

针对储能式电子器件散热器性能受相变材料较低导热能力限制的问题,采用添加高导热纳米填料的方法提高相变材料的表观导热系数,并对储能式散热器的性能提升潜力进行分析. 在短时大功率加热(热流密度为10 W/cm2)的条件下,对以二十烷为相变材料的储能式散热器在添加碳纳米管填料之后的工作过程(熔化和凝固传热)进行了三维数值模拟. 结果显示,由于相变材料表观导热系数的提高,散热器的性能随碳纳米管添加量的增加而提升,其提升程度与添加量呈近似线性相关| 当加入体积分数为10%的碳纳米管时,散热表面的最大温升相对于无碳纳米管的情形降低了8 ℃,散热器的等效总热阻则降低了14%,说明该方法是提高储能式散热器性能的有效途径.

Abstract:

 To address the concern of low thermal conductance of phase change materials (PCMs) that suppresses the performance of energy storage-based heat sinks for electronics,the apparent thermal conductivity of PCMs was increased by adding highly-conductive nanofillers and the potential in performance enhancement of such heat sinks was analyzed. Under a high heat load (heat flux was 10 W/cm2) within a short time period,the operation processes (melting and solidification heat transfer) of an energy storage-based heat sink using eicosane as the PCM with carbon nanotubes as the nanofillers are investigated numerically based on a three-dimensional model. The results show that due to the enhancement of apparent thermal conductivity of the PCM,the performance of the heat sink is improved with the increasing loading of carbon nanotubes and the extent of improvement is almost linearly correlated to the loading. When the volume fraction of carbon nanotubes is 10%,the maximum temperature rise on the cooling surface is lowered by 8 ℃ and the effective overall thermal resistance of the heat sink is decreased by 14%,as compared to those of the baseline case without carbon nanotubes,indicating that this  is a promising approach to improving the performance of energy storage-based heat sinks.

出版日期: 2013-09-01
:  TK 124  
基金资助:

中国博士后科学基金面上资助项目(2012M511362)|国家自然科学基金资助项目(51276159,51106144).

通讯作者: 范利武,男,博士后.     E-mail: liwufan@zju.edu.cn
作者简介: 肖玉麒(1988-),男,硕士生,从事相变传热学研究. E-mail:739129054@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

肖玉麒,范利武,洪荣华,徐旭,俞自涛,胡亚才. 纳米填料对储能式散热器性能影响的数值研究[J]. J4, 2013, 47(9): 1644-1649.

XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,XU Xu,YU Zi-tao,HU Ya-cai. Numerical investigation of influence of  nanofillers on performance of energy storage-based heat sink. J4, 2013, 47(9): 1644-1649.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.09.020        http://www.zjujournals.com/eng/CN/Y2013/V47/I9/1644

[1] GARIMELLA S V. Advances in mesoscale thermal management technologies for microelectronics [J]. Microelectronics Journal,2006,37(11):1165-1185.
[2] FAN L,KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review [J]. Renewable and Sustainable Energy Reviews,2011,15(1):2446.
[3] 张仁元. 相变材料与相变储能技术[M]. 北京:科学出版社,2009:10-12.
[4] 周伟,张芳,王小群. 相变温控在电子设备上的应用研究进展[J]. 电子器件,2007,30(1):344-348.
ZHOU Wei,ZHANG Fang,WANG Xiao-qun. Prospect of thermal control phase change in electronics devices [J]. Chinese Journal of Electron Devices,2007,30(1):344-348.
[5] 卢涛,姜培学. 封装有相变材料的热沉结构对电子器件高温保护的传热分析[J]. 电子器件,2005,28(2):235-238.
LU Tao,JIANG Pei-xue. Heat transfer of heat sink encapsulated with phase change material to prevent temperature from rising for electronic devices [J]. Chinese Journal of Electron Devices,2005,28(2):235238.
[6] KANDASAMY R,WANG X Q,MUJUMDAR A S. Application of phase change materials in thermal management of electronics [J]. Applied Thermal Engineering,2007,27(17/18):2822-2832.
[7] 张芳,王小群,杜善义. 相变温控在电子设备上的应用研究[J]. 电子器件,2007,30(5):1939-1942.
ZHANG Fang,WANG Xiao-qun,DU Shan-yi. Investigation on application of phase change thermal control in electronic devices [J]. Chinese Journal of Electron Devices,2007,30(5):1939-1942.
[8] 尹斌辉,高学农,丁静,等. 基于快速热响应相变材料的电子器件散热技术[J]. 华南理工大学学报:自然科学版,2007,35(7):5256,104.
YIN Bin-hui,GAO Xue-nong,DING Jing,et al. Cooling technology of electronic device based on phase-change material with rapid thermal response [J]. Journal of South China University of Technology :Natural Science Edition,2007,35(7):5256,104.
[9] KANDASAMY R,WANG X Q,MUJUMDAR A S. Transient cooling of electronics using phase change material (PCM)-based heat sinks [J]. Applied Thermal Engineering,2008,28(8-9):1047-1057.
[10] 吴斌,邢玉明. 填充泡沫复合相变材料的热控单元热性能研究[J]. 航空动力学报,2010,25(11):2486-2492.
WU Bin,XING Yu-ming. Numerical investigation of thermal control unit with foam composite phase change material [J]. Journal of Aerospace Power,2010,25(11):2486-2492.
[11] 王杰利,屈治国,李文强,等. 封装有相变材料的金属泡沫复合散热器实验研究[J]. 工程热物理学报,2011,32(2):295-298.
WANG Jie-li,QU Zhi-guo,LI Wen-qiang,et al. Experimental study of hybrid heat sink sintered with metal foams filled with phase change materials [J]. Journal of Engineering Thermophysics,2011,32(2):295-298.
[12] 高学农,李得伦,孙滔,等. 石蜡/膨胀石墨复合相变材料控温电子散热器的性能[J]. 华南理工大学学报:自然科学版,2012,40(1):7-12.
GAO Xue-nong,LI De-lun,SUN Tao,et al. Performance of temperature-controlled electronic heat sink with composite paraffin/expanded graphite phase change material [J]. Journal of South China University of Technology :Natural Science Edition,2012,40(1):7-12.
[13] WANG Y H, YANG Y T. Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink [J]. Energy,2011,36(8):5214-5224.
[14] 曾亮,周春玉,张东. 相变材料导热性能强化的研究进展[J]. 材料科学与工程学报,2010,28(6):946950,954.
ZENG Liang,ZHOU Chun-yu,ZHANG Dong. Progress in phase change materials with enhanced thermal conductivity [J]. Journal of Materials Science and Engineering,2010,28(6):946950,954.
[15] KHODADADI J M,HOSSEINIZADEH S F. Nanoparticle -enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage [J]. International Communications in Heat and Mass Transfer,2007,34(5):534-543.
[16] ZENG J L,CAO Z,YANG D W,et al. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM [J]. Journal of Thermal Analysis and Calorimetry,2009,95(2):507-512.
[17] WANG J,XIE H,XIN Z,et al. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes [J]. Carbon,2010,48(14):3979-3986.
[18] WU S,ZHU D,ZHANG X,et al. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM) [J]. Energy and Fuels,2010,24(3):1894-1989.
[19] 王继芬,谢华清,辛忠,等. 纳米ZnO/石蜡复合相变材料的热物理性质研究[J]. 工程热物理学报,2011,32(11):1897-1899.
WANG Ji-fen,XIE Hua-qing,XIN Zhong,et al. Study on the thermophysical properties of paraffin wax composites containing ZnO nanoparticles [J]. Journal of Engineering Thermophysics,2011,32(11):1897-1899.
[20] CUI Y B,LIU C H,HU S,et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials [J]. Solar Energy Materials and Solar Cells,2011,95(4):1208-1212.
[21] WEINSTEIN R D,KOPEC T C,FLEISCHER A S,et al. The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics [J]. Journal of Heat Transfer,Transactions of the ASME,2008,130(4):042405.
[22] HUMPHRIES W R,GRIGGS E I. A design handbook for phase change thermal control and energy storage devices [R]. Alabama,USA:Marshall Space Flight Center, NAJP TP-1070,1977.
[23] GHARGOZLOO P E,EATON J K,GOODSON K E. Diffusion,aggregation,and the thermal conductivity of nanofluids [J]. Applied Physics Letters,2008,93(10):103-110.

[1] 汪超, 董飞英, 范利武, 俞自涛, 胡亚才. 盐水冷却塔传热传质特性的实验研究[J]. J4, 2014, 48(4): 666-670.
[2] 曾轶, 洪荣华, 范利武,徐旭, 俞自涛, 胡亚才. 放热流体在多孔渗流水平圆柱外的自然对流[J]. J4, 2013, 47(8): 1463-1469.
[3] 王智科, 孙显东, 郭思璞, 李红霞, 李蔚, 朱华. 微小内螺纹管冷凝实验结果及关联式评价[J]. J4, 2013, 47(2): 293-299.
[4] 黄晨,程乐鸣,周星龙,吴朝刚,周棋,方梦祥,骆仲泱. 大型循环流化床炉内悬吊受热面传热特性[J]. J4, 2012, 46(11): 2128-2132.
[5] 李红霞, 李冠球, 李蔚. 管内颗粒污垢特性分析[J]. J4, 2012, 46(9): 1671-1677.
[6] 陈伟, 屈利娟, 汪超, 俞自涛, 王靖华. 盐水聚能塔式空气源热泵热水系统性能[J]. J4, 2012, 46(8): 1485-1489.
[7] 郑成航, 程乐鸣, 李涛, 骆仲泱, 倪明江, 岑可法. 多孔介质内低热值气体燃烧及传热数值模拟[J]. J4, 2010, 44(8): 1567-1572.