Please wait a minute...
J4  2012, Vol. 46 Issue (11): 2128-2132    DOI: 10.3785/j.issn.1008-973X.2012.11.028
化学工程、能源工程     
大型循环流化床炉内悬吊受热面传热特性
黄晨1,程乐鸣1,周星龙1,吴朝刚2,周棋2,方梦祥1,骆仲泱1
1.浙江大学 热能工程研究所,能源清洁利用国家重点实验室,浙江 杭州 310027;
2. 东方锅炉集团有限公司,成都 四川 611731
Suspended surface heat transfer in a large circulating
fluidized bed boiler furnace
HUANG Chen1, CHENG Le-ming1, ZHOU Xing-long1, WU Chao-gang2,
ZHOU Qi2, FANG Meng-xiang1, LUO Zhong-yang1
1. State Key Laboratory of Clean Energy Utilization, Institute for Thermal Engineering,
Zhejiang University, Hangzhou 310027, China; 2. Dongfang Boiler Group Co., Ltd. Chengdu 611731, China
 全文: PDF  HTML
摘要:

为了大型循环流化床锅炉的合理设计和安全运行,针对炉膛顶部悬吊受热面的传热特性,在六分离器、裤衩腿结构的循环流化床冷态试验台中采用电加热模拟受热屏进行实验研究,并基于颗粒团更新模型分析传热机理.实验结果表明:炉膛顶部悬吊屏表面固体颗粒浓度较大,固体颗粒以较小的速度贴壁向下运动;悬吊屏传热系数随着炉顶悬浮密度的增大而增大,炉膛空截面风速对传热系数影响不大,但通过改变炉膛悬浮密度进而改变悬吊屏传热系数.利用修正的颗粒团更新传热模型计算结果表明:当固体颗粒浓度增大时,悬吊屏表面颗粒团覆盖率增大,从而引起对流传热系数增大.

Abstract:

For rational design and safe operation of a large CFB boiler, heat transfer of suspended surface was studied experimentally in a CFB cold test rig with six cyclones and a pant-leg. An electric heated copper plate, the heat transfer probe was hung at the top region to simulate suspended surface in the furnace. The results show that the solids has high suspension density and they fall downward slowly along the suspended surface. The measured heat transfer coefficient increases with solids suspension density and it is not influenced significantly by the superficial gas velocity. The velocity mainly influences the heat transfer coefficient due to its impact on solids suspension density. Heat transfer mechanism was studied by a revised cluster renewal model. The model computation indicates that the average fraction of the surface area covered by clusters increases with the solids suspension density. This results in higher heat transfer coefficient.

出版日期: 2012-12-11
:  TK 124  
基金资助:

科技部国际合作资助项目(2011FR60190);国家“十二五”科技支撑计划资助项目(2012BAA02B01-03).

通讯作者: 程乐鸣,男,教授,博导.     E-mail: lemingc@cmee.zju.edu.cn
作者简介: 黄晨(1987-),男,硕士生,从事循环流化床锅炉的传热研究. E-mail: zju.morning69@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

黄晨,程乐鸣,周星龙,吴朝刚,周棋,方梦祥,骆仲泱. 大型循环流化床炉内悬吊受热面传热特性[J]. J4, 2012, 46(11): 2128-2132.

HUANG Chen,CHENG Le-ming,ZHOU Xing-long,WU Chao-gang,ZHOU Qi, FANG Meng-xiang,. Suspended surface heat transfer in a large circulating
fluidized bed boiler furnace. J4, 2012, 46(11): 2128-2132.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.11.028        http://www.zjujournals.com/eng/CN/Y2012/V46/I11/2128

[1] BASU P, NAG K. Heat transfer to walls of a circulating fluidizedbed furnace [J]. Chemical Engineering Science, 1996, 51(1): 1-26.
[2] GRACE J R. AVIDAN A A, KNOWLTON T M. Circulating fluidized Beds\
[M\]. London: Blackie Academic & Professional, 1997.
[3] BREITHOLTZ C. Heat transfer in circulating fluidized bed boilers [D]. Goteborg: Chalmers University of Technology, 2000.
[4] VIJAY G, REDDY B V. Effect of dilute and dense phase operating conditions on bedtowall heat transfer mechanism in a circulating fluidized bed combustor [J]. Heat Mass Transfer, 2005, 48(16): 3276-3283.
[5] KOKSAL M, GOLRIZ M R, HAMDULLAHPUR F. Effect of staged air on heat transfer in circulating fluidized beds [J]. Applied Thermal Engineering, 2008, 28(8/9): 1008-1014.
[6] DUTTA A, BASU P. An experimental investigation into the heat transfer on wing walls in a circulating fluidized bed boiler [J]. Heat Mass Transfer, 2002, 45(22): 4479-4491.
[7] 凌晓聪,吕俊复,刘青,等.循环流化床锅炉屏式受热面换热系数的测量与分析[J]. 热力发电, 2004, 33(1): 23-26.
LING Xiaocong, LV Junfu, LIU qing, et al. Measurement and analysis on heat transfer efficiency of suspended walls in circulating fluidized beds [J]. Thermal Power Generation, 2004, 33(1):23-26.
[8] 程乐鸣,王勤辉,施正伦,等. 大型循环流化床锅炉中的传热[J]. 动力工程,2006, 26(3): 305-306.
CHENG Leming, WANG Qinhui, SHI Zhenglun, et al. Heat transfer in large circulating fluidized beds [J]. Journal of Power Engineering, 2006, 26(3): 305-306.
[9] GLICKSMAN L R, HYRE M, WOLOSHUM K. Simplified scaling relationships for fluidized beds [J]. Powder Technology, 1993, 77(2): 177-199.
[10] GUNGOR A. A study on the effects of operational parameters on bedtowall heat transfer [J]. Applied Thermal Engineering, 2009, 29(11/12): 2280-2288.
[11] SUNDARESAN R, KOLAR A K. Core heat transfer studies in a circulating fluidized bed [J]. Powder Technology, 2002, 124(1/2): 138-151.
[12] SUBBARAO D, BASU P. A model for heat transfer in circulating fluidized beds [J]. Heat Mass Transfer, 1989, 29(3):487-489.

[1] 汪超, 董飞英, 范利武, 俞自涛, 胡亚才. 盐水冷却塔传热传质特性的实验研究[J]. J4, 2014, 48(4): 666-670.
[2] 肖玉麒,范利武,洪荣华,徐旭,俞自涛,胡亚才. 纳米填料对储能式散热器性能影响的数值研究[J]. J4, 2013, 47(9): 1644-1649.
[3] 曾轶, 洪荣华, 范利武,徐旭, 俞自涛, 胡亚才. 放热流体在多孔渗流水平圆柱外的自然对流[J]. J4, 2013, 47(8): 1463-1469.
[4] 王智科, 孙显东, 郭思璞, 李红霞, 李蔚, 朱华. 微小内螺纹管冷凝实验结果及关联式评价[J]. J4, 2013, 47(2): 293-299.
[5] 李红霞, 李冠球, 李蔚. 管内颗粒污垢特性分析[J]. J4, 2012, 46(9): 1671-1677.
[6] 陈伟, 屈利娟, 汪超, 俞自涛, 王靖华. 盐水聚能塔式空气源热泵热水系统性能[J]. J4, 2012, 46(8): 1485-1489.
[7] 郑成航, 程乐鸣, 李涛, 骆仲泱, 倪明江, 岑可法. 多孔介质内低热值气体燃烧及传热数值模拟[J]. J4, 2010, 44(8): 1567-1572.