Please wait a minute...
浙江大学学报(工学版)
机械与能源工程     
单分散气溶胶的声波团聚实验
周栋, 骆仲泱, 鲁梦诗, 赫明春, 陈浩, 方梦祥
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Acoustic agglomeration experiments of monodispersed aerosol
ZHOU Dong, LUO Zhong yang, LU Meng shi, HE Ming chun, CHEN Hao, FANG Meng xiang
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1133 KB)   HTML
摘要:

针对在声波团聚研究中最佳声波参数与气溶胶粒径分布情况之间的关系尚不明确的问题,提出采用单分散气溶胶作为颗粒源,研究不同粒径的单分散气溶胶对最佳声波团聚参数影响的方法.采用单分散癸二酸二异辛酯(DEHs)气溶胶作为颗粒源,研究在不同声场作用下,不同粒径、不同频率对单分散气溶胶数目浓度的影响.颗粒物数目浓度减少率越大,声波团聚的效果越好.结果表明,在选取的1 000~2 200 Hz频率段,大粒径的2 μm颗粒物声波团聚效果好于小粒径的0.2和0.5 μm的情况,而2 μm颗粒物较优的声波团聚频率略低于0.2和0.5 μm的颗粒物.

Abstract:
Taking monodispersed aerosols as particle sources, the influence of that with different particle sizes on optimal acoustic agglomeration parameters was investigated to figure out the relationship between optimal sound parameters and particle size distributions of different aerosols in acoustic agglomeration. Monodispersed DEHs (diethylhexylsebacate) aerosol was used as the particle source. The effect of particle size and sound frequency on the number concentration of monodispersed aerosol under different sound conditions was analyzed. A higher decrement rate of particle number concentration means a better effect of sound wave. It is found that when the sound frequency ranges from 1 000 to 2 200 Hz, the acoustic agglomeration of 2 μm particle is more effective than that of 0.2 μm and 0.5 μm. The optimum frequency for 2 μm particle is a bit lower.
出版日期: 2017-03-06
CLC:  X 51  
基金资助:

国家"973"重点基础研究发展规划资助项目(2013CB228500)

通讯作者: 骆仲泱,男,教授.ORCID:0000-0001-8764-2986     E-mail: zyluo@cmee.zju.edu.cn
作者简介: 周栋(1989—),男,从事细颗粒物团聚等研究.ORCID:0000-0001-8001-5189. E-mail:11127035@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

周栋, 骆仲泱, 鲁梦诗, 赫明春, 陈浩, 方梦祥. 单分散气溶胶的声波团聚实验[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.02.018.

ZHOU Dong, LUO Zhong yang, LU Meng shi, HE Ming chun, CHEN Hao, FANG Meng xiang. Acoustic agglomeration experiments of monodispersed aerosol. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.02.018.

[1] 吴兑.近十年中国灰霾天气研究综述[J].环境科学学报.2012(02): 257-269.
WU Dui. Hazy weather research in China in the last decade: A review [J]. Acta Scientiae Circumstantiae, 2012, 32(2): 257-269.
[2] KIM OANH N T, UPADHYAY N, ZHUANG Y H, et al. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources [J]. Atmospheric

Environment, 2006, 40(18): 3367-3380.
[3] HEIDENREICH S, EBERT F. Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases \[J\]. Chemical Engineering and Processing, 1995, 34(3): 235-244.
[4] 凡凤仙.外加条件作用下可吸入颗粒物长大机理研究[D].南京:东南大学, 2008.
FAN Feng xian. Mechanism study of particle growth with additional effects [D]. Nanjing: Southeast University. 2008.
[5] 赵兵.利用声波团聚增强燃烧源可吸入颗粒物脱除的研究[D].南京: 东南大学, 2008.
ZHAO Bing. Using acoustic agglomeration to enhance the removal efficiency of particles in combustion source. [D]. Nanjing: Southeast University. 2008.
[6] 陈厚涛.声波团聚增强燃烧源细颗粒物排放控制的研究[D].南京:东南大学, 2009.
CHEN Hou tao. The study of using acoustic agglomeration to enhance the control of fine particle emission [D]. Nanjing: Southeast University. 2009.
[7] PATEL S N. Low intensity (<155dB) acoustic agglomeration-bench-scale experiments [D]. Buffalo: State University of New York at Bffalo, 1981.
[8] 王洁.声波团聚及联合其他方法脱除燃煤飞灰细颗粒的研究[D].杭州:浙江大学, 2012.
WANG Jie. Study of combined acoustic agglomeration with other means to remove coal-fired fine particles [D]. Hangzhou: Zhejiang University. 2012.
[9] 张光学.燃煤飞灰气溶胶声波团聚的理论和实验研究[D].杭州:浙江大学, 2010.
ZHANG Guang xue. Experimental and theoretical studies on acoustic agglomeration of coal-fired fly ash [D]. Hangzhou: Zhejiang University. 2010.
[10] 赵磊.脉冲电晕放电烟气中细微颗粒物协同氮氧化物脱除研究[D].杭州: 浙江大学, 2013.
ZHAO Lei. Research on simultaneous removal of PM2.5and NOx from flue gas by pulsed corona discharge [D]. Hangzhou: Zhejiang University. 2013.
[11] 赵汶,刘勇,鲍静静,等.化学团聚促进燃煤细颗粒物脱除的试验研究[J].中国电机工程学报.2013(20): 52-58.
ZHAO Wen, LIU Yong, BAO Jing jing, et al. Experimental research on fine particles removal from flue gas by chemical agglomeration [J]. Proceedings of the CSEE, 2013(20): 52-58.
[12] 徐俊超.细颗粒核化凝结长大实验平台设计及特性研究[D].南京:东南大学, 2014.
XU Jun chao. Fine particle growth by nucleation and condensation experiment system design and characteristic research [D]. Nan jing: Southeast University.2014.
[13] 林潮,孙传尧,徐建民.强磁性粒子间磁团聚力的研究[J].矿冶.2000(01): 25-30.
LIN Chao, SUN Chuan yao, XU Jian min. Study on magnetic agglomeration force of ferromagnetic particles [J]. Mining and Metallurgy, 2000(01): 25-30.
[14] REETHOF G. Acoustic agglomeration of power-plant fly-ash for environmental and hot gas cleanup [J]. Journal of Vibration Acoustic Stress and Reliability in DesignTransactions of The ASME, 1988, 110(4):552-556.
[15] WANG J, LIU J, ZHANG G, et al. Orthogonal design process optimization and single factor analysis for bimodal acoustic agglomeration [J]. Powder Technology, 2011, 210(3):315-322.
[16] LIU J, ZHANG G, ZHOU J, et al. Experimental study of acoustic agglomeration of coalfired fly ash particles at low frequencies[J]. Powder Technology, 2009, 193(1): 20-25.
[17] RIERA-FRANCO DE SARABIA E, EIVIRA-SEGURA L, GONZ-LEZ-GóMEZ I, et al. Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts[J]. Ultrasonics, 2003, 41(4): 277-281.
[18] GONZ-LEZ I A, HOFFMANN T L, GALLEGO J A. Precise measurements of particle entrainment in a standing-wave acoustic filed between 20 and 3500Hz[J]. Journal of Aerosol Science, 2000, 31(12):1461-1468.
[19] LIU J, WANG J, ZHANG G, et al. Frequency comparative study of coal-fired fly ash acoustic agglomeration [J]. Journal of Environment Science, 2011, 23(11): 1845-1851.
[20] HOFFMANN T L, KOOPMANN G H. Visualization of acoustic particle interaction and agglomeration: Theory and experiments [J]. Journal of the Acoustical Society of America, 1996, 99(41): 2130-2141.

[1] 王浩霖,骆仲泱,赫明春,沈丹. 烟气成分对静电除尘器放电特性的影响[J]. 浙江大学学报(工学版), 2020, 54(12): 2336-2343.
[2] 韦彦斐,周荣,周敏捷,高翔. 水泥炉窑SNCR-SCR联合脱硝中试实验研究[J]. 浙江大学学报(工学版), 2020, 54(10): 1986-1992.
[3] 王军明,赵兴亚,陈玲红,韩黎霞,高翔,岑可法. 氨对二次有机气溶胶光学特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1812-1818.
[4] 刘舒昕,骆仲泱,鲁梦诗,赫明春,方梦祥,王浩霖. 荷电液滴联合声波捕集颗粒物的过程和特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1282-1290.
[5] 李康为,应方,陈玲红,郑仙珏,韩黎霞,吴学成,高翔,岑可法. 杭州市主城区VOCs污染特征及影响因素[J]. 浙江大学学报(工学版), 2019, 53(4): 671-683.
[6] 胡磊青,程军,王亚丽,刘建忠,周俊虎,岑可法. PVP改性PDMS/PAN中空纤维复合膜提升表面亲水性[J]. 浙江大学学报(工学版), 2019, 53(2): 228-233.
[7] 程军,刘建峰,张曦,张泽,田江磊,周俊虎,岑可法. 微藻水热提取油脂经脱氧断键制航油[J]. 浙江大学学报(工学版), 2019, 53(2): 214-219.
[8] 宁致远, 沈欣军, 李树然, 闫克平. 湿式除尘器内部湍流场与粒子轨迹的数值分析[J]. 浙江大学学报(工学版), 2017, 51(2): 384-392.
[9] 陈文聪, 侯艺文, 吴建, 王莉红. 化纤行业PM2.5和VOCs排放特性研究[J]. 浙江大学学报(工学版), 2017, 51(1): 145-152.
[10] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[11] 朱燕群, 杨业, 黄建鹏, 林法伟, 马强, 徐超群, 王智化, 岑可法. 橡胶厂60000 m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870.
[12] 张军, 李存杰, 郑成航, 翁卫国, 朱松强, 王丁振, 高翔, 岑可法. 筛板塔细颗粒物协同脱除特性实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1516-1520.
[13] 邱珊, 陈聪, 邓凤霞, 冀雅婉, 丁晓, 马放. 石墨电极E Fenton法处理罗丹明B废水[J]. 浙江大学学报(工学版), 2016, 50(4): 704-713.
[14] 周斌,周昊,王建阳,岑可法. 神华煤灰掺混木屑灰在O2/CO2气氛下的烧结特性[J]. 浙江大学学报(工学版), 2016, 50(3): 468-476.
[15] 周旭萍, 方梦祥, 项群扬, 蔡丹云, 王涛, 骆仲泱. 氨基酸盐吸收二氧化碳过程的传质特性[J]. 浙江大学学报(工学版), 2016, 50(2): 312-319.