Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (12): 2336-2343    DOI: 10.3785/j.issn.1008-973X.2020.12.008
机械工程、能源工程     
烟气成分对静电除尘器放电特性的影响
王浩霖(),骆仲泱*(),赫明春,沈丹
浙江大学 能源工程学院,浙江 杭州 310027
Effect of gas composition on discharge characteristics of electrostatic precipitator
Hao-lin WANG(),Zhong-yang LUO*(),Ming-chun HE,Dan SHEN
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1554 KB)   HTML
摘要:

为了研究烟气中O2、H2O、CO2体积分数变化对负电晕放电特性的影响机理,采用实验和数值模拟方法分析静电除尘器在不同气体成分下的伏安特性,应用COMSOL软件建立模拟烟气的电晕放电模型. 研究结果表明:当CO2体积分数增大,O2体积分数降低时,起晕电压增大,电流在低电压时与CO2体积分数负相关,在高电压时正相关;当相对湿度增大时,起晕电压降低,电流在低电压时与相对湿度正相关,在高电压时负相关;当CO2体积分数增大,O2体积分数降低时,电子数量增大;当相对湿度增大时,空间中的负离子团数量增大,离子迁移率降低. CO2体积分数和相对湿度增大,空间电荷密度增大,有利于增大扩散荷电量,从而提高细微颗粒物的脱除效率.

关键词: 静电除尘器离子产物电流空间电荷密度颗粒荷电    
Abstract:

The volt ampere characteristics of electrostatic precipitator under different gas composition were studied by experiments and numerical simulation, and a corona discharge model of simulated flue gas was established by COMSOL software in order to analyze the influence mechanism of concentration changes of O2, H2O and CO2 in flue gas on the negative corona discharge characteristics. Results show that when the CO2 concentration increases and the O2 concentration decreases, the corona onset voltage increases, the current is negatively correlated with the CO2 concentration at low voltage, and positively at high voltage. When the relative humidity increases, the corona onset voltage decreases. The current is positively correlated with the relative humidity at low voltage and negatively at high voltage. With the increasing of CO2 concentration and the decreasing of O2 concentration, the number of electrons increases. When the relative humidity increases, the number of anion clusters increases and the mobility of ions decreases. The increasing of CO2 concentration and relative humidity contributes to the increasing of space charge density, which is conducive to enhancing the diffusion charge and the removal of fine particles.

Key words: electrostatic precipitator    ion products    current    space charge density    particle charging
收稿日期: 2019-11-07 出版日期: 2020-12-31
CLC:  TK 284  
基金资助: 国家自然科学基金资助项目(51661125012)
通讯作者: 骆仲泱     E-mail: 21727098@zju.edu.cn;zyluo@zju.edu.cn
作者简介: 王浩霖(1994—),男,硕士生,从事PM2.5控制研究. orcid.org/0000-0003-0076-2067. E-mail: 21727098@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王浩霖
骆仲泱
赫明春
沈丹

引用本文:

王浩霖,骆仲泱,赫明春,沈丹. 烟气成分对静电除尘器放电特性的影响[J]. 浙江大学学报(工学版), 2020, 54(12): 2336-2343.

Hao-lin WANG,Zhong-yang LUO,Ming-chun HE,Dan SHEN. Effect of gas composition on discharge characteristics of electrostatic precipitator. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2336-2343.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.008        http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2336

图 1  模拟烟气伏安特性实验系统图
图 2  线板式静电除尘器模型
图 3  在不同CO2-O2体积分数下的伏安特性曲线
图 4  在不同CO2-O2体积分数下的净电离系数-约化场强曲线
图 5  在不同相对湿度下的伏安特性曲线
图 6  在不同相对湿度变化下的净电离系数-约化场强曲线
图 7  负电晕放电电势分布图
图 8  负电晕放电空间电荷密度分布图
图 9  CO2-O2体积分数对模型Y轴方向电子密度的影响
图 10  CO2-O2体积分数对模型Y轴上CO3−和CO4−数密度的影响
图 11  CO2-O2体积分数对模型Y轴上CO3−(H2O)和CO4−(H2O)数密度的影响
图 12  相对湿度对模型Y轴上水合离子数密度的影响
图 13  不同气体成分对模型Y轴上空间电荷密度的影响
1 国家统计局. 中国统计年鉴2019[M]. 北京: 中国统计出版社, 2018: 279-280.
2 FERNANDEZ A, DAVIS S B, WENDT J O L, et al Public health: particulate emission from biomass combustion[J]. Nature, 2001, 409: 998
3 LI R, LEUNG G C K Coal consumption and economic growth in China[J]. Energy Policy, 2012, 40 (1): 438- 443
4 JAWOREK A, KRUPA A, CZECH T Modern electrostatic devices and methods for exhaust gas cleaning: a brief review[J]. Journal of Electrostatics, 2007, 65 (3): 133- 155
doi: 10.1016/j.elstat.2006.07.012
5 CHANG J S Next generation integrated electrostatic gas cleaning systems[J]. Journal of Electrostatics, 2003, 57 (3-4): 273- 291
doi: 10.1016/S0304-3886(02)00167-5
6 MIZUNO A Electrostatic precipitation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7 (5): 615- 624
doi: 10.1109/94.879357
7 PAUTHENIER M M The charge on a spherical particle in an ionized field[J]. Journal de Physique Radium, 1932, 7: 590- 613
8 FUCHS N A, PETRIANOFF I, ROTZEIG B On the rate of charging of droplets by an ionic current[J]. Transactions of the Faraday Society, 1936, 32 (2): 1131- 1138
9 HEWITT G W The charging of small particles for electrostatic precipitation[J]. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 1957, 76 (3): 300- 306
doi: 10.1109/TCE.1957.6372672
10 ABDEL-SALAM M Influence of humidity on charge density and electric field in electrostatic precipitators[J]. Journal of Physics D (Applied Physics), 1992, 25 (9): 1318- 1322
doi: 10.1088/0022-3727/25/9/006
11 FOUAD L, ELHAZEK S Effect of humidity on positive corona discharge in a three electrode system[J]. Journal of Electrostatics, 1995, 35 (1): 21- 30
doi: 10.1016/0304-3886(95)00009-Y
12 BIAN X, MENG X, WANG L, et al Negative corona inception voltages in rod-plane gaps at various air pressures and humidities[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18 (2): 613- 619
doi: 10.1109/TDEI.2011.5739468
13 NOURI H, ZOUZOU N, MOREAU E, et al Effect of relative humidity on current?voltage characteristics of an electrostatic precipitator[J]. Journal of Electrostatics, 2012, 70 (1): 20- 24
doi: 10.1016/j.elstat.2011.08.011
14 WANG X, YOU C Effect of humidity on negative corona discharge of electrostatic precipitators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20 (5): 1720- 1726
doi: 10.1109/TDEI.2013.6633702
15 YAWOOTTI A, INTRA P, TIPPAYAWONG N, et al An experimental study of relative humidity and air flow effects on positive and negative corona discharges in a corona-needle charger[J]. Journal of Electrostatics, 2015, 77 (5): 116- 122
16 WU H, PAN D, JIANG Y, et al Improving the removal of fine particles from desulfurized flue gas by adding humid air[J]. Fuel, 2016, 184 (22): 153- 161
17 HAN B, KIM H J, KIM Y J Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion [J]. Science of the Total Environment, 2010, 408 (21): 5158- 5164
doi: 10.1016/j.scitotenv.2010.07.028
18 SURIYAWONG A, HOGAN C J, JIANG J, et al Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2–CO2 coal combustion [J]. Fuel, 2008, 87 (6): 673- 682
doi: 10.1016/j.fuel.2007.07.024
19 MIKOVINY T, KOCAN M, MATEJCIK S, et al Experimental study of negative corona discharge in pure carbon dioxide and its mixtures with oxygen[J]. Journal of Physics D: Applied Physics, 2004, 37 (1): 64- 73
doi: 10.1088/0022-3727/37/1/011
20 HENSEL K, HAYASHI N, YAMABE C, et al Positive DC corona discharge in N2?NO?CO2?O2 mixtures [J]. Japanese Journal of Applied Physics, 2002, 41 (1R): 336
21 H?FT H, KETTLITZ M, HODER T, et al The influence of O2 content on the spatio-temporal development of pulsed driven dielectric barrier discharges in O2/N2 gas mixtures [J]. Journal of Physics D: Applied Physics, 2013, 46 (9): 95202
doi: 10.1088/0022-3727/46/9/095202
22 LIU X Y, PEI X K, OSTRIKOV K, et al The production mechanisms of OH radicals in a pulsed direct current plasma jet[J]. Physics of Plasmas, 2014, 21 (9): 093513
doi: 10.1063/1.4895496
23 SIECK L W, HERON J T, GREEN D S Chemical kinetics database and predictive schemes for humid air plasma chemistry. part I: positive ion?molecule reactions[J]. Plasma Chemistry and Plasma Processing, 2000, 20 (2): 235- 258
24 MURAKAMI T, NIEMI K, GANS T, et al Chemical kinetics and reactive species in atmospheric pressure helium?oxygen plasmas with humid-air impurities[J]. Plasma Sources Science and Technology, 2012, 22 (1): 015003
doi: 10.1088/0963-0252/22/1/015003
25 CENIAN A, CHERNUKHO A, BORODIN V Modeling of plasma-chemical reactions in gas mixture of CO2 lasers I. gas decomposition in pure CO2 glow discharge [J]. Contributions to Plasma Physics, 2010, 34 (1): 25- 37
26 MASON E A, MCDANIEL E W Transport properties of ions in gases[J]. NASA STI/Recon Technical Report A, 1988, 89 (1): 219- 249
27 LIU Y, HUANG S, ZHU L Influence of humidity and air pressure on the ion mobility based on drift tube method[J]. CSEE Journal of Power and Energy Systems, 2015, 1 (3): 37- 41
doi: 10.17775/CSEEJPES.2015.00033
28 GUNZER F, ZIMMERMANN S Investigation of ion cluster formation in a pulsed ion mobility spectrometer operating in the negative mode[J]. Sensors and Actuators B: Chemical, 2014, 204 (15): 467- 473
29 骆仲泱, 江建平, 赵磊, 等 不同电场中细颗粒物的荷电特性研究[J]. 中国电机工程学报, 2014, 34 (23): 3959- 3969
LUO Zhong-yang, JIANG Jian-ping, ZHAO Lei, et al Research on the charging of fine particulate in different electric fields[J]. Proceedings of the CSEE, 2014, 34 (23): 3959- 3969
[1] 陈同有,杨家强,郑仕达,孟德智,康敏. 基于余弦函数的无传感器永磁风机IF起动平滑切换方法[J]. 浙江大学学报(工学版), 2020, 54(8): 1572-1577.
[2] 汪海晋,尹宗宇,柯臻铮,郭英杰,董辉跃. 基于一维卷积神经网络的螺旋铣刀具磨损监测[J]. 浙江大学学报(工学版), 2020, 54(5): 931-939.
[3] 龙江兴,金伟良,张军,毛江鸿,崔磊. 电化学修复后钢筋疲劳性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 64-72.
[4] 白清城, 刘建忠, 宋子阳, 程军. 废液对电解煤浆制氢的影响[J]. 浙江大学学报(工学版), 2019, 53(1): 180-185.
[5] 刘国梁, 李新, 伍梁, 李振宇, 陈国柱. 宽范围输入输出电压LCC谐振变换器的分析设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1762-1770.
[6] 傅仕航, 侯庆会, 岳奥飞, 石健将. 基于“第二类”双重移相控制的双有源桥DC-DC变换器[J]. 浙江大学学报(工学版), 2018, 52(6): 1167-1176.
[7] 宿紫鹏, 杨磊, 杨家强, 高敏. 基于开关表决策的APF与TSC混合系统投切控制方法[J]. 浙江大学学报(工学版), 2018, 52(11): 2201-2209.
[8] 钟麒, 张斌, 洪昊岑, 杨华勇. 基于电流反馈的高速开关阀3电压激励控制策略[J]. 浙江大学学报(工学版), 2018, 52(1): 8-15.
[9] 张峰, 刘畅, 黄鲁, 吴宗国. 基于双向可控硅的强鲁棒性静电防护器件[J]. 浙江大学学报(工学版), 2017, 51(8): 1676-1680.
[10] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[11] 许希, 徐甸, 严佩, 朱唯卓, 郑成航, 高翔, 骆仲泱, 倪明江, 岑可法. 高温线板式静电除尘器颗粒捕集[J]. 浙江大学学报(工学版), 2017, 51(3): 487-493.
[12] 吕俊翔, 刘军恒, 孙平, 苏雯博, 孟建, 万垚峰. 荷电反应器状态对柴油机颗粒荷质比的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2414-2419.
[13] 张明晖,杨家强,陈磊,楼佳羽. 基于扩张状态观测器的永磁电机电流预测控制[J]. 浙江大学学报(工学版), 2016, 50(7): 1387-1392.
[14] 李春艳,张功,刘杰,高忠权. 排除法确定离子电流成因的试验[J]. 浙江大学学报(工学版), 2016, 50(5): 978-983.
[15] 潘龙, 陶定峰, 何闻, 顾邦平. 矩形横截面导体内衰减振荡电流脉冲的趋肤效应[J]. 浙江大学学报(工学版), 2016, 50(4): 625-630.