Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1199-1205    DOI: 10.3785/j.issn.1008-973X.2022.06.018
能源与机械工程     
CuCr2O4催化剂形貌特征与其SCR脱硝性能的关系
高尔豪1,2(),寿恬雨2,3,黄蓓3,王伟1,施耀2
1. 常州大学 环境与安全工程学院,江苏 常州 213164
2. 浙江大学 化学工程与生物工程学院,浙江 杭州 310027
3. 浙江菲达环保科技股份有限公司,浙江 诸暨 311800
Relationship between morphology characteristics of CuCr2O4catalyst and its SCR denitrification activity
Er-hao GAO1,2(),Tian-yu SHOU2,3,Bei HUANG3,Wei WANG1,Yao SHI2
1. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
2. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
3. Zhejiang Feida Environmental Protection Technology Limited Company, Zhuji 311800, China
 全文: PDF(1666 KB)   HTML
摘要:

分别制备形貌为多面体状、颗粒状、球状的尖晶石型CuCr2O4催化剂,测试对比不同形貌CuCr2O4催化剂的SCR脱硝性能. 结果表明,多面体状CuCr2O4的催化活性最好,且在157 ℃时脱硝效率达到50%,在225~320 ℃脱硝效率超过99%,具有良好的抗硫、抗水性能. 脱硝活性由大到小依次为多面体状CuCr2O4、颗粒状CuCr2O4、球状CuCr2O4. 采用表征技术分析微观形貌对CuCr2O4脱硝性能的影响. N2吸附-脱附结果显示,多面体状CuCr2O4具有最大的比表面积(25.5 m2/g)和最大的孔容积(0.154 cm3/g);X射线光电子能谱(XPS)结果显示,多面体状CuCr2O4相较于其他形貌拥有更高比例的表面活性氧(49.5%)和Cu+(16.2%);NH3-程序升温脱附(NH3-TPD)结果显示,多面体状CuCr2O4拥有最高表面酸浓度(0.12 mmol/g)及酸强度;H2-程序升温还原(H2-TPR)结果显示,多面体状CuCr2O4表面活性物种最易还原且数量最多(3.69 mmol/g),使得SCR反应在低温段更易进行. 多面体状CuCr2O4的高表面酸性与氧化还原性,使其具有良好的脱硝性能.

关键词: CuCr2O4尖晶石形貌SCR脱硝性能催化剂    
Abstract:

The SCR denitrification activities of CuCr2O4 catalysts with various morphologies were tested and compared. The spinel-type CuCr2O4 catalysts with polyhedral, granular and spherical shapes were prepared, respectively. The results showed that polyhedral CuCr2O4 showed the best catalytic activity, with the de-NOx activity reaching 50% at 157 ℃ and maintaining above 99% at 225-320 ℃, and it exhibited good resistance against water vapor and SO2. The de-NOx activities follow the sequence of polyhedral CuCr2O4 > granular CuCr 2O4>spherical CuCr2O4. The effects of morphology on the denitrification performance of CuCr2O4 were analyzed by a series of characterization techniques. N2 sorption-desorption results showed that polyhedral CuCr2O4 had the highest specific surface area (25.5 m2/g) and the largest pore volume (0.154 cm3/g); X-ray photoelectron spectroscopy (XPS) results showed that polyhedral CuCr2O4 possessed the highest ratio of surface reactive oxygen species (49.5%) and Cu+(16.2%); NH3-programmed temperature desorption (NH3-TPD) showed that polyhedral CuCr2O4 had the highest surface acid concentration (0.12 mmol/g) and intensity; H2-programmed temperature reduction (H2-TPR) showed that polyhedral CuCr2O4 had the most reducible and abundant surface active species (3.69 mmol/g), which facilitated the SCR reaction in the low-temperature range. The enhanced surface acidity and redox properties of polyhedral CuCr2O4 makes it exhibit better de-NOx performance.

Key words: CuCr2O4    spinel    morphology    SCR    denitrification performance    catalyst
收稿日期: 2021-07-23 出版日期: 2022-06-30
CLC:  X 511  
基金资助: 江苏省自然科学基金资助项目(BK20210857);江苏省普通高校自然科学研究资助项目(21KJB610006);常州大学科研启动基金资助项目(ZMF21020016)
作者简介: 高尔豪(1993—),男,讲师,博士,从事工业烟气脱硝与VOCs催化净化技术研究. orcid.org/0000-0002-3705-5289.E-mail: gaoerhao@cczu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
高尔豪
寿恬雨
黄蓓
王伟
施耀

引用本文:

高尔豪,寿恬雨,黄蓓,王伟,施耀. CuCr2O4催化剂形貌特征与其SCR脱硝性能的关系[J]. 浙江大学学报(工学版), 2022, 56(6): 1199-1205.

Er-hao GAO,Tian-yu SHOU,Bei HUANG,Wei WANG,Yao SHI. Relationship between morphology characteristics of CuCr2O4catalyst and its SCR denitrification activity. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1199-1205.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.018        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1199

图 1  CuCr2O4催化剂的脱硝效率
图 2  CuCr2O4催化剂生成N2O体积分数与N2选择性
图 3  SO2+H2O对CuCr2O4催化剂脱硝效率的影响
图 4  CuCr2O4催化剂的微观形貌特征
图 5  CuCr2O4催化剂的粒径分布
图 6  CuCr2O4催化剂的N2吸附脱附等温线与BJH孔径分布
催化剂 S/(m2·g?1) d/nm V/(cm3·g?1)
CuCr2O4-P 25.5 10.9 0.154
CuCr2O4-G 21.8 11.5 0.146
CuCr2O4-S 16.7 10.4 0.098
表 1  CuCr2O4催化剂的比表面积、孔径与孔容
图 7  CuCr2O4催化剂的XRD图谱
催化剂 x/%
Cu O Cr Oα/(Oα+Oβ) Cu+/(Cu++Cu2+)
CuCr2O4-P 12.82 66.07 21.11 49.5 16.2
CuCr2O4-G 9.57 66.39 24.04 39.4 7.6
CuCr2O4-S 13.40 63.21 24.44 40.8 10.7
表 2  CuCr2O4催化剂的表面元素摩尔分数
图 8  CuCr2O4催化剂O 1s与Cu 2p3/2分峰拟合结果
图 9  CuCr2O4催化剂的NH3-TPD图谱
图 10  CuCr2O4催化剂的H2-TPR图谱
1 中华人民共和国生态环境部. 2020中国生态环境状况公报 [R/OL]. (2021-05-26)[2021-6-25]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdf.
2 LAI J, WACHS I E A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts [J]. ACS Catalysis, 2018, 8 (7): 6537- 6551
doi: 10.1021/acscatal.8b01357
3 刘怀平, 尹海滨, 熊尚超, 等 水泥炉窑中低温催化脱硝技术中试性能研究[J]. 中国环境科学, 2021, 41 (7): 3169- 3175
LIU Huai-ping, YIN Hai-bin, XIONG Shang-chao, et al A pilot scale study of low-temperature De-NOx in cement furnace [J]. Chinese Environmental Science, 2021, 41 (7): 3169- 3175
doi: 10.3969/j.issn.1000-6923.2021.07.019
4 PENG Y, WANG D, LI B, et al Impacts of Pb and SO2 poisoning on CeO2–WO3/TiO2–SiO2 SCR catalyst [J]. Environmental Science and Technology, 2017, 51 (20): 11943- 11949
doi: 10.1021/acs.est.7b03309
5 DAMMA D, ETTIREDDY P R, REDDY B M, et al A review of low temperature NH3-SCR for removal of NOx[J]. Catalysts, 2019, 9 (4): 349
doi: 10.3390/catal9040349
6 ZHAO Q, CHEN B, LI J, et al Insights into the structure-activity relationships of highly efficient CoMn oxides for the low temperature NH3-SCR of NOx[J]. Applied Catalysis B: Environmental, 2020, 277: 119215
doi: 10.1016/j.apcatb.2020.119215
7 SHI Y, TANG X, YI H, et al Controlled synthesis of spinel-type mesoporous Mn-Co rods for SCR of NOx with NH3 at low temperature [J]. Industrial and Engineering Chemistry Research, 2019, 58 (9): 3606
doi: 10.1021/acs.iecr.8b05223
8 MATHEW D S, JUANG R S An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions[J]. Chemical Engineering Journal, 2007, 129 (1/3): 51- 65
9 MATHEW T, SHIJU N R, SREEKUMAR K, et al Cu-Co synergism in Cu1-xCoxFe2O4 catalysis and XPS aspects [J]. Journal of Catalysis, 2002, 210 (2): 405- 417
doi: 10.1006/jcat.2002.3712
10 GAO E, SUN G, ZHANG W, et al Surface lattice oxygen activation via Zr4+ cations substituting on A2+ sites of MnCr2O4 forming ZrxMn1-xCr2O4 catalysts for enhanced NH3-SCR performance [J]. Chemical Engineering Journal, 2020, 380: 122397
doi: 10.1016/j.cej.2019.122397
11 GAO E, HUANG B, ZHAO Z, et al Understanding the co-effects of manganese and cobalt on the enhanced SCR performance for MnxCo1-xCr2O4 spinel-type catalysts [J]. Catalysis Science and Technology, 2020, 10 (14): 4752- 4765
doi: 10.1039/D0CY00872A
12 WANG D, JANGJOU Y, LIU Y, et al A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts [J]. Applied Catalysis B: Environmental, 2015, 165: 438- 445
doi: 10.1016/j.apcatb.2014.10.020
13 SMIRNIOTIS P G, PEÑA D A, UPHADE B S Low ‐temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2[J]. Angewandte Chemie International Edition, 2001, 40 (13): 2479- 2482
doi: 10.1002/1521-3773(20010702)40:13<2479::AID-ANIE2479>3.0.CO;2-7
14 ZHANG T, CHANG H, Li K, et al Different exposed facets VOx/CeO2 catalysts for the selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2018, 349: 184- 191
doi: 10.1016/j.cej.2018.05.049
15 LONG R Q, YANG R T Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst [J]. Journal of Catalysis, 2002, 207 (2): 224- 231
doi: 10.1006/jcat.2002.3528
16 HAN S, CHENG J, ZHENG C, et al Effect of Si/Al ratio on catalytic performance of hydrothermally aged Cu-SSZ-13 for the NH3-SCR of NO in simulated diesel exhaust [J]. Applied Surface Science, 2017, 419: 382- 392
doi: 10.1016/j.apsusc.2017.04.198
17 XIONG S, PENG Y, WANG D, et al The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: improvement of low-temperature activity and sulfur resistance [J]. Chemical Engineering Journal, 2020, 387: 124090
doi: 10.1016/j.cej.2020.124090
18 WAN Y, ZHAO W, TANG Y, et al Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B: Environmental, 2014, 148/149: 114- 122
doi: 10.1016/j.apcatb.2013.10.049
19 PEÑA D A, UPHADE B S, SMIRNIOTIS P G TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals [J]. Journal of Catalysis, 2004, 221 (2): 421- 431
doi: 10.1016/j.jcat.2003.09.003
20 QIU M, ZHAN S, ZHU D, et al NH3-SCR performance improvement of mesoporous Sn modified Cr-MnOx catalysts at low temperatures [J]. Catalysis Today, 2015, 258: 103- 111
doi: 10.1016/j.cattod.2015.03.049
[1] 姚喆赫,张操棋,宋其伟,卢习江,孔建强,姚建华. 超声辅助激光修复镍基高温合金V形槽[J]. 浙江大学学报(工学版), 2021, 55(5): 887-895.
[2] 白大鹏,张斌,洪昊岑,李洋,季清华,杨华勇. 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报(工学版), 2021, 55(2): 289-298.
[3] 张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.
[4] 冯毅雄,李康杰,高一聪,郑浩,谭建荣. 基于特征与形貌重构的轴件表面缺陷检测方法[J]. 浙江大学学报(工学版), 2020, 54(3): 427-434.
[5] 韦彦斐,周荣,周敏捷,高翔. 水泥炉窑SNCR-SCR联合脱硝中试实验研究[J]. 浙江大学学报(工学版), 2020, 54(10): 1986-1992.
[6] 徐泽坤,沈宏宇,胡涛,李响,董树荣. 新型VBO接口芯片静电放电防护器件[J]. 浙江大学学报(工学版), 2019, 53(4): 794-800.
[7] 杜军, 王鑫, 任传奇, 白浩. 金属熔融涂覆成形薄壁件表面形貌与工艺[J]. 浙江大学学报(工学版), 2018, 52(1): 24-28.
[8] 赵斌, 张松, 李剑峰. 基于零件摩擦学性能的磨削参数优化[J]. 浙江大学学报(工学版), 2018, 52(1): 16-23.
[9] 张峰, 刘畅, 黄鲁, 吴宗国. 基于双向可控硅的强鲁棒性静电防护器件[J]. 浙江大学学报(工学版), 2017, 51(8): 1676-1680.
[10] 谢贵明, 王稚阳, 包永忠. 发泡剂存在下的偏氯乙烯悬浮共聚合成粒过程[J]. 浙江大学学报(工学版), 2017, 51(2): 378-383.
[11] 杨航, 郑成航, 金侃, 张军, 张涌新, 翁卫国,吴学成, 高翔. 燃煤电厂选择性催化还原脱硝系统运行成本[J]. 浙江大学学报(工学版), 2017, 51(2): 363-369.
[12] 厉文榜,方梦祥,岑建孟,肖平,时正海,山石泉,王勤辉,骆仲泱. K-Fe复合催化剂对煤半焦气化速率与产物的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1746-1751.
[13] 倪明江, 赵乐, 方梦祥, 李敏, 李超, 王勤辉, 骆仲泱. 催化剂对CH4气氛下的煤热解特性的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 320-326.
[14] 李清毅, 孟炜, 吴国潮, 张军, 朱松强, 胡达清, 郑成航, 高翔, 王汝能, 刘海蛟. 超低排放脱硝运行状态及稳定性评估[J]. 浙江大学学报(工学版), 2016, 50(12): 2303-2311.
[15] 俞明锋,李晓东,李文维,陈彤,严建华. 新型钒基催化剂催化降解气相二噁英[J]. 浙江大学学报(工学版), 2016, 50(11): 2052-2057.