浙江大学学报(工学版)  2018, Vol. 52 Issue (1): 16-23    DOI: 10.3785/j.issn.1008-973X.2018.01.003
 机械与能源工程

1. 山东大学 机械工程学院, 山东 济南 250061;
2. 山东大学 高效洁净机械制造教育部重点实验室, 山东 济南 250061
Optimization of grinding parameters based on parts' friction properties
ZHAO Bin, ZHANG Song, LI Jian-feng
1. School of Mechanical Engineering, Shandong University, Jinan 250061, China;
2. Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061, China
 全文: PDF(1179 KB)   HTML

Abstract:

An optimization model with multiple-input and multiple-output was achieved using genetic algorithm method and neural network method. Surface roughness parameters (arithmetic mean deviation, surface bearing index, core fluid retention index and valley fluid retention index) were taken as input layer factors, and the output layer factors were grinding parameters (wheel linear speed, workpiece linear speed, grinding depth and longitudinal feed rate). Moreover, this model was applied to predict grinding parameters for special surface topography aiming at different friction performances in hydrodynamic lubrication. Grinder, grinding wheel and workpiece size different from sample experiment were applied in the verification test. Results show that the maximum error between predicted values and experiments is only 12.87%, which implies the good accuracy, reliability and universality of this optimization model. This optimization model can efficiently improve the design efficiency of process plan.

 CLC: TH117

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

#### 引用本文:

ZHAO Bin, ZHANG Song, LI Jian-feng. Optimization of grinding parameters based on parts' friction properties. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 16-23.

#### 链接本文:

 [1] XIAO L, BJÖRKLUND S, ROSÉN B G. The influence of surface roughness and the contact pressure distribution on friction in rolling/sliding contacts[J]. Tribology International, 2007, 40(4):694-698. [2] 汪久根, 冯兰兰, 李阳. 粗糙表面形貌对电蚀的影响[J]. 浙江大学学报:工学版, 2015, 49(11):2025-2032. WANG Jiu-gen, FENG Lan-lan, LI Yang. Influences of surface topography on electrial pitting[J]. Journal of Zhejiang University:Engineering Science, 2015, 49(11):2025-2032. [3] 方新燕. 三维表面形貌的表征及润滑特性的研究[D]. 合肥:合肥工业大学, 2006. FANG Xin-yan. Characterization and lubrication analysis of three-dimensional surface topography[D]. Hefei:HeFei University of Technology, 2006. [4] 刘会静, 洪军, 杨国庆,等. 微凸体切向滑移特性[J]. 浙江大学学报:工学版, 2014, 48(6):1114-1119. LIU Hui-jing, HONG Jun, YANG Guo-qing, et al. Tangential sliding characteristics of asperities[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(6):1114-1119. [5] RAMESH A, AKRAM W, MISHRA S P, et al. Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication[J]. Tribology International, 2013, 57(4):170-176. [6] YAO C F, JIN Q C, HUANG X C, et al. Research on surface integrity of grinding Inconel 718[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(5):1019-1030. [7] 项欣, 陈平, 李俊玲,等. 圆凹坑织构对线接触摩擦副摩擦学性能的影响[J]. 中国表面工程, 2015, 28(4):33-38. XIANG Xin, CHEN Ping, LI Jun-ling, et al. Influence of dimple texture on tribological behavior of line contact friction pairs[J]. China Surface Engineering, 2015, 28(4):33-38. [8] LIU W, DENG Z, SHANG Y, et al. Effects of grinding parameters on surface quality in silicon nitride grinding[J]. Ceramics International, 2016, 43(1):1571-1577. [9] ALI F, KANETA M, KRUPKA I, et al. Experimental and numerical investigation on the behavior of transverse limited micro-grooves in EHL point contacts[J]. Tribology International, 2015, 84(Suppl.1):81-89. [10] 万轶, 李建亮, 熊党生. 滑动速度对织构化表面润滑状态的影响[J]. 中南大学学报:自然科学版, 2015, 46(12):4442-4447. WAN Yi, LI Jian-liang, XIONG Dang-sheng. Influence of sliding velocity on lubrication state of surface texturing[J]. Journal of Central South University:Science and Technology, 2015(12):4442-4447. [11] 冯付良. 轴向车铣表面粗糙度的研究[D]. 上海:上海交通大学, 2008. FENG Fu-liang. Research on the nexus of influence element for turn milling machined surface roughness[D]. Shanghai:Shanghai Jiao Tong University, 2008. [12] BENARDOS P G, VOSNIAKOS G C. Predicting surface roughness in machining:a review[J]. International Journal of Machine Tools and Manufacture, 2003, 43(8):833-844. [13] EL-SONBATY I A, KHASHABA U A, SELMY A I, et al. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach[J]. Journal of Materials Processing Technology, 2008, 200(1):271-278. [14] LIU Y, WARKENTIN A, BAUER R, et al. Investigation of different grain shapes and dressing to predict surface roughness in grinding using kinematic simulations[J]. Precision Engineering, 2013, 37(3):758-764. [15] ZHANG N, SHETTY D. An effective LS-SVM based approach for surface roughness prediction in machined surfaces[J]. Neurocomputing, 2016, 198(C):35-39. [16] KARKALOS N E, GALANIS N I, MARKOPOULOS A P. Surface roughness prediction for the milling of Ti-6Al-4V ELI alloy with the use of statistical and soft computing techniques[J]. Measurement, 2016, 90:25-35. [17] EZUGWU E O, FADARE D A, BONNEY J, et al. Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network[J]. International Journal of Machine Tools and Manufacture, 2005, 45(12/13):1375-1385. [18] ÖZEL T, KARPAT Y. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4):467-479. [19] HANIEF M, WANI M F. Modeling and prediction of surface roughness for running-in wear using Gauss-Newton algorithm and ANN[J]. Applied Surface Science, 2015, 357(1):1573-1577. [20] ÇAYDA ÇU, HASÇALIK A. A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method[J]. Journal of Materials Processing Technology, 2008, 202(1-3):574-582. [21] MIA M, DHAR N R. Prediction of surface roughness in hard turning under high pressure coolant using Artificial Neural Network[J]. Measurement, 2016, 92:464-474. [22] 傅荟璇. MATLAB:神经网络应用设计[M]. 北京:机械工业出版社, 2010:153-173. [23] 温诗铸, 黄平. 摩擦学原理[M]. 北京:清华大学出版社, 2012:147-151. [24] SARAVANAKUMAR P, MANESH K K, SINGAPERUMAL M, et al. Modelling of fluid continuum considering 3D surface parameters in hydraulic assemblies[J]. Precision Engineering, 2009, 33(1):99-106. [25] ZHAO B, ZHANG S, LI J, et al. Friction characteristics of sliding guideway material considering original surface functional parameters under hydrodynamic lubrication[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology, 2016, 231(7):813-825.
 [1] 王菲菲, 徐颖强, 刘楷安. 粗糙表面切向接触刚度概率分析方法[J]. 浙江大学学报(工学版), 2018, 52(2): 255-260. [2] 刘文, 杨云, 林腾蛟, 张晋红. 偏心误差影响下的斜齿轮摩擦激励计算方法[J]. 浙江大学学报(工学版), 2017, 51(8): 1559-1567.