Please wait a minute...
浙江大学学报(工学版)
能源工程与动力工程     
新型钒基催化剂催化降解气相二噁英
俞明锋,李晓东,李文维,陈彤,严建华
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Catalytic destruction of PCDD/Fs over  new vanadium based oxide catalysts
YU Ming feng, LI Xiao dong, LI Wen wei, CHEN Tong, YAN Jian hua
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1624 KB)   HTML
摘要:

为了开发新型催化剂高效降解二噁英,在钒基催化剂中分别负载不同量的W、Mn和Ce,研究200 ℃时不同催化剂降解二噁英的降解率,着重分析17种有毒同系物的降解规律,结果表明:当WOx,MnOx和CeOx的质量分数为5%时,催化剂的活性达到最大并且添加MnOx和CeOx的催化剂表现出较高的活性.此时对于MnOx和CeOx催化剂,二噁英同系物整体上随着氯代数的提高降解率增加,而对于WOx催化剂,PCDDs的降解率呈现逐渐下降的趋势,而PCDFs却是先略微提升然后下降.当质量分数为1%或10%时,WOx催化剂同系物的活性高于MnOx和CeOx催化剂.无论何种催化剂PCDDs的降解率都会高于PCDFs.

Abstract:

The vanadium based oxide catalysts were dipped with various metals,including W, Mn and Ce, with different loadings in order to develop new catalysts to destroy PCDD/Fs (polychlorinated dibenzo-p-dioxins and dibenzofurans) with high activity at 200 ℃. The destruction efficiencies on dioxins, especially for the seventeen toxic congeners were significantly analyzed. Results show that when the WOx, MnOx and CeOx mass fraction is 5%, the catalytic activity reaches the maximum. For catalysts containing MnOx and CeOx, the destruction efficiencies of PCDD/F congeners basically increase with the increase of chlorination level. For  catalysts containing WOx, the destruction efficiencies of PCDD congeners show the decreasing trend; the destruction efficiencies of PCDF congeners initially increase and then decrease. When the second metal loading is 1% or 10%, the catalytic activity of WOx catalysts is higher than that of MnOx and CeOx catalysts. The destruction efficiency of PCDDs is always higher than that of PCDFs no matter what kind of second metal is added. 

出版日期: 2016-11-01
:  X 592  
基金资助:

国家“973”重点基础研究发展计划资助项目(2011CB201503).

通讯作者: 李晓东,男,教授.ORCID:0000-0002-5331-5968.     E-mail: lixd@zju.edu.cn
作者简介: 俞明锋(1989-),男,博士生,从事有机污染物排放控制与降解等研究. ORCID:0000-0002-2374-6249. E-mail:zjuyumingfeng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

俞明锋,李晓东,李文维,陈彤,严建华. 新型钒基催化剂催化降解气相二噁英[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.11.002.

YU Ming feng, LI Xiao dong, LI Wen wei, CHEN Tong, YAN Jian hua. Catalytic destruction of PCDD/Fs over  new vanadium based oxide catalysts. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.11.002.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.11.002        http://www.zjujournals.com/eng/CN/Y2016/V50/I11/2052

[1] OLIE K, VERMEULEN P L, HUTZINGER O. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands [J]. Chemosphere. 1977, 6(8): 455-459.
[2] 仲兆平, 金保升, 兰计香,等. 城市生活垃圾与煤混烧过程中二噁英的排放与净化研究[J]. 中国电机工程学报, 2003, 23(12):184-188.
ZHONG Zhaopin, JIN Baosheng, LAN Jixiang, et al. Dioxins emission and purification during cocombusition of municipal solid waste and coal mixture [J]. Proceedings of the CSEE, 2003, 23(12):184-188.
[3] 侯霞丽, 李晓东, 陈彤,等. 垃圾焚烧飞灰中主要元素的深度分布及形态[J]. 浙江大学学报:工学版, 2015, 49(5):930-937.
HOU Xiali, LI Xiaodong, CHEN Tong, et al. Distribution and chemical forms of major elements in MSWI fly ash [J]. Journal of Zhejiang University Science A. 2015, 49(5):930-937.
[4] HAJIZADEH Y, ONWUDILI J A, WILLIAMS P T. Removal potential of toxic 2378substituted PCDD/F from incinerator flue gases by wastederived activated carbons [J]. Waste management. 2011, 31(6): 1194-1201.
[5] 金宜英, 田洪海. 布袋除尘器和活性炭滤布对烟气中二噁英类的去除效果[J]. 环境科学, 2003, 24(2):143-146.
JIN Yiying, TIAN Honghai. Removal efficiency of dioxins in Flue gas from MSW incineration by using bag house and activated carban filter/adsorbor [J]. Environmental Science. 2003, 24(2):143-146.
[6] CHANG M B, LIN J J. Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan[J]. Chemosphere. 2001, 45(8): 1151-1157.
[7] WIELGOSINSKI G. The possibilities of reduction of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans emission[J]. International Journal of Chemical Engineering. 2010, 2010.
[8] LIU Y, WEI Z, FENG Z, et al. Oxidative destruction of chlorobenzene and odichlorobenzene on a highly active catalyst: MnOx/TiO2Al2O3[J]. Journal of Catalysis, 2001, 202(1): 200-204.
[9] YIM S D, KOH D J, NAM I. A pilot plant study for catalytic decomposition of PCDDs/PCDFs over supported chromium oxide catalysts [J]. Catalysis today. 2002, 75(1): 269-276.
[10] 张文睿, 唐爱东, 向辉,等. 新型V2O5/VOSO4催化剂催化降解气相二噁英[J]. 工业催化, 2011, 19(5):59-63.
ZHANG Wenrui, TANG Aidong, XIANG hui, ea al. Catalytic decomposition of gaseous dioxins on a novel V2O5/VOSO4 catalyst[J]. Industrial Catalysis. 2011, 19(5):59-63.
[11] HAGENMAIER H. Katalystische Oxidation halogenierter Kohlenwasserstoffe unter besonderer Berücksichtigung des Dioxinproblems [J]. VDIBerichte. 1989, 730: 239-254.
[12] BERTINCHAMPS F, GREGOIRE C, GAIGNEAUX E M. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)aromatics: Part I: Identification of the optimal main active phases and supports[J]. Applied Catalysis B: Environmental. 2006, 66(1): 19.
[13] QI G, YANG R T. Lowtemperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania [J]. Applied Catalysis B: Environmental. 2003, 44(3): 217-225.
[14] TIAN W, FAN X, YANG H, et al. Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene [J]. Journal of hazardous materials. 2010, 177(1): 887-891.
[15] DAI Q, WANG X, LU G. Lowtemperature catalytic destruction of chlorinated VOCs over cerium oxide[J]. Catalysis Communications. 2007, 8(11): 1645-1649.
[16] AZALIM S, FRANCO M, BRAHMI R, et al. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr–Ce–Mn catalysts [J]. Journal of hazardous materials. 2011, 188(1): 422-427.
[17] SAHLEDEMESSIE E, DEVULAPELLI V G. Vapor phase oxidation of dimethyl sulfide with ozone over V2O5/TiO2 catalyst [J]. Applied Catalysis B: Environmental. 2008, 84(3): 408-419.
[18] WANG X, KANG Q, LI D. Lowtemperature catalytic combustion of chlorobenzene over MnOxCeO2 mixed oxide catalysts [J]. Catalysis Communications. 2008, 9(13): 2158-2162.
[19] CHEN T, YAN J H, LU S Y, et al. Characteristic of polychlorinated dibenzopdioxins and dibenzofurans in fly ash from incinerators in China [J]. Journal of hazardous materials, 2008, 150(3): 510514.
[20] 纪莎莎,李晓东,俞明锋,等. V2O5WO3/TiO2催化剂降解气相二恶英的研究[J]. 浙江大学学报:工学版. 2014(10): 1746-1751.
JI Shasha, LI Xiaodong, YU Mingfeng, et al. Oxidation of PCDD/Fs over V2O5TiO2based catalyst [J]. Journal of Zhejiang University Science A. 2014(10): 1746-1751.
[21] BERTINCHAMPS F, GREGOIRE C, GAIGNEAUX E M. Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)aromatics: Part II: Influence of the nature and addition protocol of secondary phases to VOx/TiO2[J]. Applied Catalysis B: Environmental. 2006, 66(1): 10-22.
[22] TIAN W, FAN X, YANG H, et al. Preparation of MnOx/TiO2 composites and their properties for catalytic oxidation of chlorobenzene [J]. Journal of hazardous materials. 2010, 177(1): 887-891.
[23] FAN X, YANG H, TIAN W, et al. Catalytic Oxidation of Chlorobenzene over MnO x/Al2O3carbon Nanotubes Composites [J]. Catalysis letters. 2011, 141(1): 158-162.
[24] WU Z, JIN R, WANG H, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature [J]. Catalysis Communications. 2009, 10(6): 935-939.
[25] WU M, WANG X, DAI Q, et al. Low temperature catalytic combustion of chlorobenzene over MnCeO/γAl2O3 mixed oxides catalyst [J]. Catalysis Today. 2010, 158(3): 336-342.

[1] 陈永铎, 王晓晨, 李颖, 朱安娜, 刘振, 闫克平. 等离子体辅助Fenton洗消甲基膦酸二甲酯水溶液[J]. J4, 2013, 47(12): 2195-2201.