Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (8): 1588-1596    DOI: 10.3785/j.issn.1008-973X.2022.08.013
机械与能源工程     
固胺负载SBA-15的石墨烯改性及其CO2吸附性能
郭萌(),张玉茹,魏幸,王文静*()
河北大学 生命科学学院,河北 保定 071002
Graphene modification in amine-functionalized SBA-15 and its CO2 adsorption capacity
Meng GUO(),Yu-ru ZHANG,Xing WEI,Wen-jing WANG*()
School of Life Sciences, Hebei University, Baoding 071002, China
 全文: PDF(1962 KB)   HTML
摘要:

为了提高固胺负载SBA-15的CO2吸附性能及稳定性,推进其在燃烧后CO2捕集中的实际应用,采用湿法浸渍制备新型石墨烯掺杂超支链聚合物(HBP)负载SBA-15(G/SBA-15/HBP)固胺负载吸附剂用于CO2捕集. 通过SEM、TEM、N2吸附、XRD、FTIR对吸附剂的微观结构和化学组成进行表征,研究分析HBP负载量、吸附温度和脱附温度对CO2吸附性能的影响并优化反应条件,探讨石墨烯改性前、后吸附剂的热稳定性和循环性能. 结果表明,当HBP负载量达到50%时,G/SBA-15/HBP的CO2吸附量为1.50 mmol/g,相较传统SBA-15/HBP提升了51.51%. 石墨烯掺杂能减少颗粒团聚,有利于气体扩散;增加载体12%比表面积及31%孔隙容积,有利于负载HBP的均匀分散,暴露更多的吸附位点. 石墨烯掺杂提升了固胺负载吸附剂的热稳定性,提高了吸附剂的使用寿命及循环稳定性.

关键词: 石墨烯二氧化硅固态胺吸附CO2捕集    
Abstract:

The amine-functionalized sorbent, graphene/SBA-15/hyperbranched polymer (G/SBA-15/HBP), was prepared by wet impregnation method for CO2 capture, to improve the adsorption capacity and stability of amine-functionalized SBA-15 and promote its practical application for post-combustion CO2 capture. The microstructure and chemical composition of adsorbents were characterized by SEM, TEM, N2 adsorption, XRD and FTIR. The effects of HBP mass fraction, adsorption temperature and desorption temperature on CO2 adsorption performance were analyzed, and the reaction conditions were optimized. The thermal stability and cycle performance of the adsorbents before and after graphene modification were investigated. With the HBP mass fraction of 50%, the CO2 adsorption capacity of G/SBA-15/HBP was 1.50 mmol/g, increasing by 51.51% as compared to that of conventional SBA-15/HBP. Graphene-doping decreased particle agglomeration and facilitated gas diffusion. Increasing 12% surface area and 31% pore volume of supports benefited the uniform dispersion of loaded HBP and helped to expose more adsorption sites. Graphene-doping improved the thermal stability of amine-functionalized adsorbents and enhanced its working lifespan and cycle stability.

Key words: graphene    silica    solid amine    adsorption    CO2 capture
收稿日期: 2022-01-11 出版日期: 2022-08-30
CLC:  X 51  
基金资助: 国家自然科学基金资助项目(52106141);河北省自然科学基金资助项目 (E2020201022)
通讯作者: 王文静     E-mail: guom_mail@126.com;wangwenjing@hbu.edu.cn
作者简介: 郭萌(1998—),女,硕士生,从事碳捕集与利用技术研究. orcid.org/0000-0002-3386-1179. E-mail: guom_mail@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郭萌
张玉茹
魏幸
王文静

引用本文:

郭萌,张玉茹,魏幸,王文静. 固胺负载SBA-15的石墨烯改性及其CO2吸附性能[J]. 浙江大学学报(工学版), 2022, 56(8): 1588-1596.

Meng GUO,Yu-ru ZHANG,Xing WEI,Wen-jing WANG. Graphene modification in amine-functionalized SBA-15 and its CO2 adsorption capacity. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1588-1596.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.013        https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1588

图 1  SEM、TEM图和结构模型
图 2  N2吸附/脱附等温线
样品 SBET/(m2·g?1) Vtotal/(cm3·g?1) PBJH/ nm
G/SBA-15 666.82 0.89 7.76
SBA-15 595.69 0.68 8.04
G/SBA-15/HBP 37.98 0.074 8.37
SBA-15/HBP 15.44 0.030 16.05
表 1  负载HBP前、后的孔结构参数
图 3  SBA-15和G/SBA-15的低角度XRD图谱
图 4  SBA-15和G/SBA-15在50% HBP负载及CO2吸附前、后的红外光谱
图 5  HBP负载量和反应时间对G/SBA-15/HBP和SBA-15/HBP的CO2吸附性能的影响
吸附剂类型 θ/℃ p/kPa c/(mmol·g?1) 参考文献
G/SBA-15/HBP (50) 75 100 1.50 本研究
PEI改性碳 75 100 1.09 [41]
石墨纳米带 30 100 0.26 [42]
NaY沸石 50 100 2.17 [43]
Cu-MOF 25 100 0.65 [44]
PEI/SBA-15 25 10 0.65 [45]
氨基硅烷接枝气凝胶 25 100 1.68 [46]
分子印迹吸附剂(MIPs) 60 100 0.48 [47]
PEI 改性膨润土 75 100 1.10 [48]
咪唑基聚离子液体 25 100 0.30 [49]
表 2  G/SBA-15/HBP与不同吸附剂的CO2吸附性能比较
图 6  吸附温度和脱附温度对G/SBA-15/HBP (50) CO2吸附量的影响
图 7  升温和循环过程中G/SBA-15/HBP(50)、SBA-15/HBP(50)和HBP的热稳定性(N2气氛)
图 8  G/SBA-15/HBP (50) 和 SBA-15/HBP (50) 的循环性能
1 CIAIS P, TAN J, WANG X, et al Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient [J]. Nature, 2019, 568 (7751): 221- 225
doi: 10.1038/s41586-019-1078-6
2 STERN N. Stern review: the economics of climate change [EB/OL]. [2022-01-01]. https://www.osti.gov/etdeweb/biblio/20838308.
3 DUDLEY B. BP statistical review of world energy [R]. London: BP, 2019.
4 中国电力企业联合会. 2018年电力统计基本数据一览表 [R]. 北京: 中电联行业发展与环境资源部, 2019.
5 史晓斐, 杨思宇, 钱宇, 等 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69 (12): 4931- 4946
SHI Xiao-fei, YANG Si-yu, QIAN Yu, et al Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69 (12): 4931- 4946
6 AMMENDOLA P, RAGANATI F, CHIRONE R CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: thermodynamics and kinetics [J]. Chemical Engineering Journal, 2017, 322: 302- 313
doi: 10.1016/j.cej.2017.04.037
7 VEGA F, BAENA-MORENO F M, FERNANDEZ L M G, et al Current status of CO2 chemical absorption research applied to CCS: towards full deployment at industrial scale [J]. Applied Energy, 2020, 260: 114313
8 GUO Y F, TAN C, SUN J, et al Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption [J]. Chemical Engineering Journal, 2020, 381: 122736
9 YU M, HAN Y Y, LI J, et al CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors [J]. Chemical Engineering Journal, 2017, 317: 493- 502
doi: 10.1016/j.cej.2017.02.105
10 WANG Z H, JIN H H, MENG T, et al Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-airbatteries[J]. Advanced Functional Materials, 2018, 28 (39): 1802596
11 HAMZHY M, OPANASENKO M, CONCEPCION P, et al New trends in tailoring active sites in zeolite-based catalysts[J]. Chemical Society Reviews, 2019, 48 (4): 1095- 1149
doi: 10.1039/C8CS00887F
12 DU J, LI F, SUN L C Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction[J]. Chemical Society Reviews, 2021, 50 (4): 2663- 2695
doi: 10.1039/D0CS01191F
13 WANG M C, DONG R H, FENG X L Two-dimensional conjugated metal-organic frameworks (2Dc-MOFs): chemistry and function for MOFtronics[J]. Chemical Society Reviews, 2021, 50 (4): 2764- 2793
doi: 10.1039/D0CS01160F
14 SINGH G, LEE J, KARAKOTI A, et al Emerging trends in porous materials for CO2 capture and conversion [J]. Chemical Society Reviews, 2020, 49 (13): 4360- 4404
doi: 10.1039/D0CS00075B
15 赵传文, 陈晓平, 赵长遂 钾基CO2吸收剂再生反应特性 [J]. 工程热物理学报, 2009, 30 (12): 2145- 2148
ZHAO Chuan-wen, CHEN Xiao-ping, ZHAO Chang-sui Characteristics of regeneration reaction of dry potassium-based sorbent for CO2 capture [J]. Journal of Engineering Thermophysics, 2009, 30 (12): 2145- 2148
doi: 10.3321/j.issn:0253-231X.2009.12.047
16 雷苏, 曾鹏鑫, 王鹏, 等 Na2CO3基吸附剂颗粒制备及其脱碳性能 [J]. 化工进展, 2019, 38 (8): 3562- 3571
LEI Su, ZENG Peng-xin, WANG Peng, et al Investigation on granulation and CO2 uptake of Na2CO3-based sorbent pellets [J]. Chemical Industry and Engineering Progress, 2019, 38 (8): 3562- 3571
17 李扬, 张扬, 刘文强, 等 基于锂循环吸附CO2的燃煤发电系统热力特性研究 [J]. 工程热物理学报, 2020, 41 (11): 2876- 2884
LI Yang, ZHANG Yang, LIU Wen-qiang, et al Study on thermodynamic characteristics of coal-fired power generation system based on lithium looping cycle for CO2 adsorption [J]. Journal of Engineering Thermophysics, 2020, 41 (11): 2876- 2884
18 MA L, QIN C L, PI S, et al Fabrication of efficient and stable Li4SiO4-based sorbent pellets via extrusion-spheronization for cyclic CO2 capture [J]. Chemical Engineering Journal, 2020, 379: 122385
19 孙超颖, 李英杰, 闫宪尧, 等 钙循环捕集CO2后CaO的水合/脱水热化学储热性能 [J]. 化工进展, 2020, 39 (5): 1734- 1743
SUN Chao-ying, LI Ying-jie, YAN Xian-yao, et al Hydration/dehydration thermochemical heat storage performance of CaO from CO2 capture cycles [J]. Chemical Progress, 2020, 39 (5): 1734- 1743
20 孙荣岳, 叶江明, 陈凌海, 等 Cl含量对钙基吸收剂微观结构以及动力学性能的影响[J]. 化工进展, 2018, 37 (9): 3629- 3634
SUN Rong-yue, YE Jiang-ming, CHEN Ling-hai, et al Effect of Cl content on the microstructure and dynamic performance of calcium-based sorbent[J]. Chemical Progress, 2018, 37 (9): 3629- 3634
21 LASHAKI M J, KHIAVI S, SAYARI A Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle [J]. Chemical Society Reviews, 2019, 48 (12): 3320- 3405
doi: 10.1039/C8CS00877A
22 HAHN M W, JELIC J, BERGER E, et al Role of amine functionality for CO2 chemisorption on silica [J]. Journal of Physical Chemistry B, 2016, 120 (8): 1988- 1995
doi: 10.1021/acs.jpcb.5b10012
23 KIM S N, SON W J, CHOI J S, et al CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis [J]. Microporous and Mesoporous Materials, 2008, 115 (3): 497- 503
doi: 10.1016/j.micromeso.2008.02.025
24 OH J, MO Y H, LE V D, et al Borane-modified graphene-based materials as CO2 adsorbents [J]. Carbon, 2014, 79: 450- 456
doi: 10.1016/j.carbon.2014.08.004
25 NAJAFABADI A T Emerging applications of graphene and its derivatives in carbon capture and conversion: current status and future prospects[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 1515- 1545
doi: 10.1016/j.rser.2014.09.022
26 YANG S B, ZHAN L, XU X Y, et al Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture [J]. Advanced Materials, 2013, 25 (15): 2130- 2134
doi: 10.1002/adma.201204427
27 VERMA P, KUWAHARA Y, MORI K, et al Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications[J]. Nanoscale, 2020, 12: 11333- 11363
28 SANZ R, CALLEJA G, ARENCIBIA A, et al CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15 [J]. Applied Surface Science, 2010, 256 (17): 5323- 5328
doi: 10.1016/j.apsusc.2009.12.070
29 SON W J, CHOI J S, AHN W S Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Microporous and Mesoporous Materials, 2008, 113 (1–3): 31- 40
doi: 10.1016/j.micromeso.2007.10.049
30 WANG W J, MOTUZAS J, ZHAO X S, et al Enhanced CO2 sorption efficiency in amine-functionalised 2D/3D graphene/silica hybrid sorbents [J]. Chemical Communications, 2018, 54 (75): 10586- 10589
doi: 10.1039/C8CC06373G
31 XIONG Z G, ZHANG L L, ZHAO X S Visible-light-induced dye degradation over copper-modified reduced graphene oxide[J]. Chemistry-A European Journal, 2011, 17 (8): 2428- 2434
doi: 10.1002/chem.201002906
32 HUMMERS Jr W S, OFFEMAN R E Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80 (6): 1339
doi: 10.1021/ja01539a017
33 ZHAO D, FENG J, HUO Q, et al Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279 (5350): 548- 552
doi: 10.1126/science.279.5350.548
34 WHITE L, TRIPP C Reaction of (3-aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces[J]. Journal of Colloid and Interface Science, 2000, 232 (2): 400- 407
doi: 10.1006/jcis.2000.7224
35 LIN L Y, BAI H L Continuous generation of mesoporous silica particles via the use of sodium metasilicate precursor and their potential for CO2 capture [J]. Microporous and Mesoporous Materials, 2010, 136 (1–3): 25- 32
doi: 10.1016/j.micromeso.2010.07.012
36 MA X L, WANG X X, SONG C S "Molecular basket" sorbents for separation of CO2 and H2S from various gas streams [J]. Journal of the American Chemical Society, 2009, 131 (16): 5777- 5783
doi: 10.1021/ja8074105
37 NIU M Y, YANG H M, ZHANG X C, et al Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture [J]. Acs Applied Materials and Interfaces, 2016, 8 (27): 17312- 17320
doi: 10.1021/acsami.6b05044
38 WANG X, GUO Q J, KONG T T Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture [J]. Chemical Engineering Journal, 2015, 273: 472- 480
doi: 10.1016/j.cej.2015.03.098
39 LOGANATHAN S, TIKMANI M, EDUBILLI S, et al CO2 adsorption kinetics on mesoporous silica under wide range of pressure and temperature [J]. Chemical Engineering Journal, 2014, 256: 1- 8
doi: 10.1016/j.cej.2014.06.091
40 BALASUBRAMANIAN R, CHOWDHURY S. Recent advances and progress in the development of graphene-based adsorbents for CO2 capture [J]. Journal of Materials Chemistry A, 2015, 3: 21968-21989.
41 TANG Z, HAN Z, YANG G, et al Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture [J]. Applied Surface Science, 2013, 277: 47- 52
doi: 10.1016/j.apsusc.2013.03.142
42 ASAI M, OHBA T, IWANGAG T, et al Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O [J]. Journal of the American Chemical Society, 2011, 133: 14880- 14883
doi: 10.1021/ja205832z
43 ALINEZHAD H, ABARGHOUEI M R F, TAJBAKHSH M, et al Application of MEA, TEPA, and morpholine grafted NaY zeolite as CO2 capture [J]. Iranian Journal of Chemistry and Chemical Engineering-International English Edition, 2021, 40: 581- 592
44 BAO Z, ALNEMRAT S, YU L, et al Kinetic separation of carbon dioxide and methane on a copper metal-organic framework[J]. Journal of Colloid and Interface Science, 2011, 357: 504- 509
doi: 10.1016/j.jcis.2011.01.103
45 KUWAHARA Y, KANG D Y, COPELAND J R, et al Dramatic enhancement of CO2 uptake by poly (ethyleneimine) using zirconosilicate supports [J]. Journal of the American Chemical Society, 2012, 134: 10757- 10760
doi: 10.1021/ja303136e
46 ZHANG T M, ZHANG Y, JIANG H, et al Aminosilane-grafted spherical cellulose nanocrystal aerogel with high CO2 adsorption capacity, environmental science and pollution research international [J]. Environmental Science and Pollution Research, 2019, 26 (16): 16716- 16726
doi: 10.1007/s11356-019-05068-3
47 ZHAO Y, SHEN Y, BAI L, et al Synthesis and CO2 adsorption properties of molecularly imprinted adsorbents [J]. Environmental Science and Technology, 2012, 46: 1789- 1795
doi: 10.1021/es203580b
48 CHEN C, PARK D W, AHN W S Surface modification of a lowcost bentonite for post-combustion CO2 capture [J]. Applied Surface Science, 2013, 283: 699- 704
doi: 10.1016/j.apsusc.2013.07.005
49 PRIVALOVA E I, KARJALAINEN E, NURMI M, et al Imidazolium-based poly (ionic liquid)s as new alternatives for CO2 capture [J]. ChemSusChem, 2013, 6: 1500- 1509
doi: 10.1002/cssc.201300120
50 WANG D, WANG X, SONG C Comparative study of molecular basket sorbents consisting of polyallylamine and polyethylenimine functionalized SBA-15 for CO2 capture from flue gas [J]. ChemPhysChem, 2017, 18 (22): 1439- 7641
51 黄从亮, 冯妍卉, 张欣欣, 等. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究[J]物理学报, 2012, 61(15): 323-330.
HUANG Cong-liang , FENG Yan-hui, ZHANG Xin-xin, et al. Thermal conductivity measurements on PANI/SBA-15 and PPy/SBA-15[J]. Chinese Journal of Physics, 2012, 61(15): 323-330.
[1] 王涛,董昊,侯成龙,王欣茹. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475.
[2] 武恩宇,钱国栋,李斌. 铝基金属-有机框架材料的水吸附性能与大气集水应用[J]. 浙江大学学报(工学版), 2022, 56(1): 186-192.
[3] 何璇,周启星. 基于壳聚糖气凝胶的新型石油吸附剂研究进展[J]. 浙江大学学报(工学版), 2021, 55(7): 1368-1380.
[4] 任王瑜,侯世成,姜孝男,陈卫祥. MoS2/硼掺杂石墨烯的电化学析氢和储锂性能[J]. 浙江大学学报(工学版), 2020, 54(8): 1628-1636.
[5] 吴志强,卫军,董荣珍. 石墨烯压阻复合材料及其在裂纹监测中的应用[J]. 浙江大学学报(工学版), 2020, 54(2): 233-240.
[6] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[7] 龙碧波, 叶斌晖, 刘青林, 罗亚婷, 施积炎. 草酸青霉SL2处理高盐含Cr(VI)电镀废水的试验研究[J]. 浙江大学学报(工学版), 2018, 52(8): 1616-1623.
[8] 宋迎宾, 徐金霞, 蒋林华, 谭启平, 梅友静. NO3-/NO2-插层MgAl-LDHs在混凝土模拟孔溶液中的阻锈性能[J]. 浙江大学学报(工学版), 2018, 52(12): 2397-2405.
[9] 杨金垚, 方梦祥, 岑旗钢, 王涛, 何卉. 活性炭捕集燃煤烟气中二氧化碳的模拟分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2142-2149.
[10] 宋伟, 姜红建, 王滔, 高振飞, 杜镇韬, 朱世强. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1837-1844.
[11] 曹伟波, 王丽军, 李希. 壁流蜂窝式微填充床制备及变压吸附中的应用[J]. 浙江大学学报(工学版), 2017, 51(4): 777-783.
[12] 李海凤,王成习. DMAC水溶液乙酸吸附分离过程[J]. 浙江大学学报(工学版), 2016, 50(9): 1725-1729.
[13] 韩磊,祝培旺,程乐鸣,王勤辉,施正伦,骆仲泱. 煤灰酸浸渣烧结反应试验[J]. 浙江大学学报(工学版), 2016, 50(5): 955-960.
[14] 邵卫云, 易文涛, 周永潮, 张萍. 天然斜发沸石吸附铅(Pb2+)机理[J]. 浙江大学学报(工学版), 2015, 49(6): 1173-1178.
[15] 俞晋频,邱坤赞,宋浩,高翔,周劲松. Cr/TiO2催化剂汞氧化的实验[J]. 浙江大学学报(工学版), 2015, 49(11): 2186-2192.