Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2142-2149    DOI: 10.3785/j.issn.1008-973X.2018.11.013
机械与能源工程     
活性炭捕集燃煤烟气中二氧化碳的模拟分析
杨金垚, 方梦祥, 岑旗钢, 王涛, 何卉
浙江大学 热能工程研究所, 浙江 杭州 310027
Simulation of capturing carbon dioxide from flue gas by activated carbon
YANG Jin-yao, FANG Meng-xiang, CEN Qi-gang, WANG Tao, HE Hui
Institute of Thermal Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1395 KB)   HTML
摘要:

为探究适合描述活性炭吸附CO2的数学模型和蒸汽吹扫再生CO2的固体吸附工艺,使用Aspen Adsorption模拟固定床动态吸附烟气中CO2的过程.模拟与实验的穿透曲线的对比表明,与采用纯组分吸附、Particle MB传质模型得到的模拟结果相比,采用理想吸附-线性阻力模型(IAS-LDF组合模型)得到的模拟结果与实验数据的一致性更高.建立完整变温吸附模型,使用高温蒸汽和吸附后烟气分别加热和冷却再生床,分析吹扫温度、吸附/脱附时间对CO2捕集率、产品纯度和分离能耗的影响.结果表明,提高吹扫温度能够较大地提升捕集率,并且需要增加的能耗较少,但是对产品纯度的提升较小.当吸附/脱附时间为2~4 min时,吹扫温度从100℃升到200℃,捕集率平均提高了11.1%,能耗提升了13.9%,产品纯度仅平均提高了1.7%.提高吸附/脱附时间能够显著提升产品纯度,但是会降低捕集率和增加较多的能耗.在100~200℃吹扫温度下,吸附/脱附时间从2 min增加到4 min,产品纯度平均提升了13.6%,CO2捕集率平均下降了4.8%,能耗提升了43.1%.

Abstract:

Dynamical adsorption of CO2 in flue gas by fixed-bed was simulated by Aspen Adsorption to investigate the suitable mathematical model for CO2 adsorption by activated carbon and the solid adsorption process for regenerating CO2 using steam blowing. Comparison between simulative and experimental breakthrough curves showed that the simulation data with ideal adsorption solution-linear diver force (IAS-LDF) model was more coincident with experimental data than results of models using pure component adsorption or Particle MB model. A complete temperature swing adsorption model was established, and the fixed-bed was heated and cooled respectively by high-temperature steam and adsorbed flue gas. The effects of purge temperature, adsorption/desorption time on CO2 capture rate, product purity and energy consumption were analyzed. The results showed that the increase of purge temperature enhanced the capture rate significantly and raised energy consumption slightly, but had few effects on the product purity. When the purge temperature increased from 100℃ to 200℃ with the adsorption/desorption time of 2~4 min, the capture rate increased by 11.1%, the energy consumption increased by 13.9%, and the product purity increased by 1.7%. The increase of adsorption/desorption time greatly improved the product purity, but reduced the capture rate and increased the energy consumption obviously. When the adsorption/desorption time increased from 2 min to 4 min with the purge temperature of 100~200℃, the product purity increased by 13.6%, the capture rate of CO2 decreased by 4.8%, and the energy consumption increased by 43.1%.

收稿日期: 2017-09-21 出版日期: 2018-11-22
CLC:  X773  
基金资助:

国家重点研发计划资助项目(2017YFB0603300)

通讯作者: 方梦祥,男,教授.orcid.org/0000-0002-3282-8756.     E-mail: mxfang@zju.edu.cn
作者简介: 杨金垚(1993-),男,硕士生,从事CO2捕集研究.orcid.org/0000-0002-8086-0320.E-mail:21627036@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

杨金垚, 方梦祥, 岑旗钢, 王涛, 何卉. 活性炭捕集燃煤烟气中二氧化碳的模拟分析[J]. 浙江大学学报(工学版), 2018, 52(11): 2142-2149.

YANG Jin-yao, FANG Meng-xiang, CEN Qi-gang, WANG Tao, HE Hui. Simulation of capturing carbon dioxide from flue gas by activated carbon. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2142-2149.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.013        http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2142

[1] EIA. International energy outlook[R]. Washington DC:Energy Information Administration, 2011:205-236.
[2] 郭自悦. 二氧化碳脱除工艺探讨[J]. 中国高新技术企业, 2016(8):83-85. GUO Zi-yue. Carbon dioxide removal process[J]. China High Technology Enterprises, 2016(8):83-85.
[3] HOUSE K Z, HARVEY C F, AZIZ M J, et al. The energy penalty of post-combustion CO2 capture and storage and its implications for retrofitting the U.S. installed base[J]. Energy and Environment Science, 2009, 2(2):193-205.
[4] SCULLEY J P, VERDEGAAL W M, LU W, et al. High-throughput analytical model to evaluate materials for temperature swing adsorption processes[J]. Advanced Materials, 2013, 25(29):3957-3961.
[5] NTIAMOAH A, LING J, XIAO P, et al. CO2 capture by temperature swing adsorption:use of hot CO2 rich gas for regeneration[J]. Industrial and Engineering Chemistry Research, 2016, 55(3):703-713.
[6] TLILI N, GREVILLOT G, VALLIERES C. Carbon dioxide capture and recovery by means of TSA and/or VSA[J]. International Journal of Greenhouse Gas Control, 2009, 3(5):519-527.
[7] CLAUSSE M, MEREL J, MEUNIER F. Numerical parametric study on CO2 capture by indirect thermal swing adsorption[J]. International Journal of Greenhouse Gas Control, 2011, 5(5):1206-1213.
[8] 徐冬, 张军, 李刚, 等. CO2和H2O在活性炭上的吸附平衡和吸附动力学研究[J]. 无机材料学报, 2012, 27(2):139-145 XU Dong, ZHANG Jun, LI Gang, et al. Adsorption equilibrium and adsorption kinetics of CO2 and H2O on activated carbon[J]. Journal of Inorganic Materials, 2012, 27(2):139-145
[9] 彭松水. 基于Aspen Adsorption的CO2净化工艺动态模拟[J]. 石化技术, 2015, 22(5):13-16 PENG Song-shui. Dynamic simulation of CO2 purification process based on aspen adsorption[J]. Petrochemical Industry Technology, 2015, 22(5):13-16
[10] QAZVINI O T, FATEMI S. Modeling and simulation pressure-temperature swing adsorption process to remove mercaptan from humid natural gas:a commercial case study[J]. Separation and Purification Technology, 2015, 139(1):88-103.
[11] RUTHVEN D M. Principles of adsorption and adsorption processes[M]. New York:John Wiley and Sons, 1984, 56:168-179.
[12] CHOI S, DREASEJH, JONESCW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources[J]. Chemsuschem, 2009, 2(9):796-854.
[13] 岑旗钢. 活性炭材料吸附分离烟气中二氧化碳研究[D]. 杭州:浙江大学, 2017:41. CEN Qi-gang. Research on CO2 adsorption from flue gas by activated carbons[D]. Hangzhou:Zhejiang University, 2017:41.
[14] PLAZA M G, DURAN I, QUEREJETA N, et al. Experimental and simulation study of adsorption in postcombustion conditions using a microporous biochar.1.CO2 and N2 adsorption[J]. Industrial and Engineering Chemistry Research, 2016, 55(11):3097-3112.
[15] KAST W. Adsorption aus der gasphase-grundlagen und verfahren[J]. ChemieIngenieurTechnik, 2010, 53(3):160-172.
[16] HO M T, ALLINSONG W, WILEYD E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption[J]. Industrial and Engineering Chemistry Research, 2008, 47(14):1562-1568.
[17] 奚飞, 梁志武, 陈光莹, 等. 醇胺吸收法烟气脱碳工艺流程的改进与优化模拟[J]. 化工进展, 2012(31):236-239 XI Fei, LIANG Zhi-wu, CHEN Guang-ying, et al. Process simulation and improvement of CO2 removal system using MEA absorption in coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2012(31):236-239
[18] 高红霞, 符开云, 那艳清, 等. 单乙醇胺(MEA)蒸汽再压缩-分流解吸脱碳工艺的模拟与优化[EB/OL]. (2014-10-29)[2017-9-30] . http://www.paper.edu.cn/releasepaper/content/201411-47.

No related articles found!