Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2162-2170    DOI: 10.3785/j.issn.1008-973X.2024.10.020
土木工程、交通工程     
考虑站点换乘的地铁多车站接运公交线路优化
郑好(),曹弋*(),王珊
大连交通大学 交通运输工程学院,辽宁 大连 116028
Feeder bus route optimization of multiple subway stations considering station transfer
Hao ZHENG(),Yi CAO*(),Shan WANG
School of Traffic and Transportation Engineering, Dalian Jiaotong University, Dalian 116028, China
 全文: PDF(1589 KB)   HTML
摘要:

为了实现公交与地铁的有效接驳,提高公交系统接运效率,开展接运公交线路优化研究. 考虑多个地铁站与公交站间客流的起点?终点(OD)需求与换乘特性,建立双层规划模型. 上层模型的目标函数旨在使公交运营成本及乘客出行成本之和最小化,约束条件考虑线路的完整性、路径的合理性;下层模型为客流分配模型,以线路容量、站点换乘构建约束条件. 引入精英保留策略,将邻域搜索算法与遗传算法组合,设计模型求解算法. 案例分析结果表明,所设计算法的最小误差为1.6%,算法效率显著提升;与原公交线网相比,优化后公交载客量提升29%,人均出行成本降低13%. 实验结果表明,所建模型基于系统最优原则,能够对多个地铁站周边的公交站进行统筹优化;优化方案在提升载客率、降低人均出行成本与提高公交系统接运效率方面优势明显.

关键词: 路线优化改进遗传算法邻域搜索接运公交站点换乘全局优化    
Abstract:

The optimization of feeder bus routes was studied to realize the effective connection between bus and subway and improve the transfer efficiency of the bus system. A two-layer programming model was established, considering the origin-destination (OD) demand of passenger flow and the transfer characteristics between multiple subway stations and bus stations. The objective function of the upper layer model aimed to minimize the sum of bus operating cost and passenger travel cost, and the integrity of the route and the rationality of the route were considered as two constraints. The lower layer model was a passenger flow allocation model, which constructed constraint conditions based on the line capacity and the station transfer. An elite retention strategy was introduced, and a model-solving algorithm was designed by combining the neighborhood search algorithm with the genetic algorithm. The case analysis indicated that the minimum error of the designed algorithm was 1.6%, and the algorithm efficiency improved significantly. After the optimization of the bus route network, the bus passenger capacity increased by 29%, and the per capita travel cost decreased by 13%. Experimental results show that the proposed model based on the principle of system optimization optimizes the bus stops around multiple subway stations. The optimization scheme has obvious advantages in improving the load factor, reducing the per capita travel cost and improving the transfer efficiency of the bus system.

Key words: route optimization    improved genetic algorithm    neighborhood search    feeder bus    station transfer    global optimization
收稿日期: 2023-08-14 出版日期: 2024-09-27
CLC:  U 491.2  
基金资助: 辽宁省社会科学规划基金资助项目(L22BSH003).
通讯作者: 曹弋     E-mail: zhenghao9910@163.com;caoyi820619@aliyun.com
作者简介: 郑好(1999—),女,硕士生,从事交通运输规划与管理研究. orcid.org/0009-0008-6851-504X. E-mail:zhenghao9910@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郑好
曹弋
王珊

引用本文:

郑好,曹弋,王珊. 考虑站点换乘的地铁多车站接运公交线路优化[J]. 浙江大学学报(工学版), 2024, 58(10): 2162-2170.

Hao ZHENG,Yi CAO,Shan WANG. Feeder bus route optimization of multiple subway stations considering station transfer. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2162-2170.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.020        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2162

图 1  接运公交线路模型示意图
图 2  出行时间示意图
图 3  多次换乘惩罚示意图
图 4  接运线路合理性示意图
图 5  接运线路容量约束示意图
图 6  接运公交线路优化模型的流程图
图 7  大连市地铁1号线及附近的公交站点分布
图 8  迭代次数与系统总成本的关系
图 9  接运路线优化结果示意图
线路优化线路
改进遗传算法枚举法
14-5-6-1-16-22-254-5-10-1-16-11
29-10-1-7-8-11-239-14-15-1-6-7-8
313-14-15-2-1718-12-13-20-2-21-23
418-12-19-20-2-21-2426-19-2-17-25-24-22
526-29-3-28-30-2729-3-28-30-27
表 1  接运线路优化结果
名称运行方案top/scz/元?/%
改进遗传算法14220 716.97.6
23820 940.32.7
34321 935.21.6
枚举法162920 386.1
表 2  不同算法的性能比较
线路线路编号cb/元q/人cp/元$ {\overline c_{\mathrm{p}}} $/元
优化线路既有公交优化线路既有公交优化线路既有公交优化线路既有公交优化线路既有公交
14-5-6-1-16-22-255-6-7-8-11-1-106109.14857.479354714607.813041.04.14.7
29-10-1-7-8-11-2318-20-2-21-24-25646593
313-14-15-2-176-1-15-2-20-19-26924652
418-12-19-20-2-21-249-13-14-20596414
526-29-3-28-30-2717-22-24-27-30604554
表 3  公交线网优化前后的公交运营及乘客出行成本
图 10  系统最优建模方案
图 11  站点换乘示意图
1 CALABRÒ G, INTURRI G, LE PIRA M, et al Bridging the gap between weak-demand areas and public transport using an ant-colony simulation-based optimization[J]. Transportation Research Procedia, 2020, 45: 234- 241
doi: 10.1016/j.trpro.2020.03.012
2 YANG Y, JIANG X, FAN W, et al Schedule coordination design in a trunk-feeder transit corridor with spatially heterogeneous demand[J]. IEEE Access, 2020, 8: 96391- 96403
doi: 10.1109/ACCESS.2020.2996084
3 DENG L B, HE Y, ZENG N X, et al Optimal design of feeder-bus network with split delivery[J]. Journal of Transportation Engineering, 2020, 146 (3): 04019078
doi: 10.1061/JTEPBS.0000305
4 ZERMASLI D, ILIOPOULOU C, LASKARIS G, et al Feeder bus network design with modular transit vehicles[J]. Journal of Public Transportation, 2023, 25: 100078
doi: 10.1016/j.jpubtr.2023.100078
5 CAO Y, JIANG D, WANG S Optimization for feeder bus route model design with station transfer[J]. Sustainability, 2022, 14 (5): 2780
doi: 10.3390/su14052780
6 TAPLIN J H, SUN Y Optimizing bus stop locations for walking access: stops-first design of a feeder route to enhance a residential plan[J]. Environment and Planning B: Urban Analytics and City Science, 2020, 47 (7): 1237- 1259
doi: 10.1177/2399808318824108
7 高明瑶, 石红国 基于改进PSO算法的轨道交通接运公交线路优化问题[J]. 交通运输工程与信息学报, 2019, 17 (4): 49- 54
GAO Mingyao, SHI Hongguo Optimization of a rail transit line based on an improved particle swarm optimization algorithm[J]. Journal of Transportation Engineering and Information, 2019, 17 (4): 49- 54
doi: 10.3969/j.issn.1672-4747.2019.04.007
8 LEE Y J, MESKAR M, NICKKAR A, et al Development of an algorithm for optimal demand responsive relocatable feeder transit networks serving multiple trains and stations[J]. Urban Rail Transit, 2019, 5 (3): 186- 201
doi: 10.1007/s40864-019-00109-z
9 BADIA H, JENELIUS E Feeder transit services in different development stages of automated buses: comparing fixed routes versus door-to-door trips[J]. Transportation Research Procedia, 2020, 47: 521- 528
doi: 10.1016/j.trpro.2020.03.127
10 DOU X P, MENG Q Feeder bus timetable design and vehicle size setting in peak hour demand conditions[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673 (10): 321- 332
doi: 10.1177/0361198119846462
11 郭戎格, 关伟, 张文义, 等 考虑多路径选择的定制电动公交线路优化[J]. 交通运输系统工程与信息, 2021, 21 (2): 133- 138
GUO Rongge, GUAN Wei, ZHANG Wenyi, et al Customized electric bus routing optimization considering multi-path selection[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (2): 133- 138
12 孙倩, 胡大伟, 钱一之, 等 考虑车辆随机到站时间的动态需求响应型接驳公交线路优化[J]. 交通运输系统工程与信息, 2022, 22 (5): 196- 204
SUN Qian, HU Dawei, CHIEN Steven, et al Dynamic bus routing optimization for demand-responsive feeder transit considering stochastic bus arrival time[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (5): 196- 204
13 刘晓佳, 李子木, 卢罗兰 基于双层规划的轨道交通接运公交线路优化模型[J]. 上海海事大学学报, 2022, 43 (3): 50- 55
LIU Xiaojia, LI Zimu, LU Luolan Optimal model of rail transit feeder bus lines based on bi-level programming[J]. Journal of Shanghai Maritime University, 2022, 43 (3): 50- 55
14 YU X, BI Y , CHEN P, et al. Determining a key service area of feeder buses for rail transit station based on potential railway demand [J]. KSCE Journal of Civil Engineering , 2023, 27: 5338−5349.
15 ZHANG S, CEDER A A, CAO Z Integrated optimization for feeder bus timetabling and procurement scheme with consideration of environmental impact[J]. Computers and Industrial Engineering, 2020, 145: 106501
doi: 10.1016/j.cie.2020.106501
16 付康林, 程向昕, 陈涛, 等 考虑换乘时间需求的响应型接驳公交系统的协调优化[J]. 长沙理工大学学报: 自然科学版, 2021, 18 (3): 69- 78
FU Kanglin, CHENG Xiangxin, CHEN Tao, et al Coordination and optimization of responsive feeder transit system considering transfer time demand[J]. Journal of Changsha University of Science and Technology: Natural Science, 2021, 18 (3): 69- 78
17 郑亚晶, 李耀辉, 靳文舟 考虑换乘客流的城市轨道交通网络末班车衔接优化研究[J]. 华南理工大学学报: 自然科学版, 2022, 50 (5): 32- 39
ZHENG Yajing, LI Yaohui, JIN Wenzhou Connection scheme optimization of last trains of urban mass transit network based on considering the transfer passengers[J]. Journal of South China University of Technology: Natural Science Edition, 2022, 50 (5): 32- 39
18 王顺, 刘杰, 姜宁宇, 等 多换乘站多车场响应型接驳公交的协调优化[J]. 交通科学与工程, 2021, 37 (2): 76- 84
WANG Shun, LIU Jie, JIANG Ningyu, et al Coordinated optimization of responsive feeder transit with multiple depot and transfer station[J]. Journal of Transport Science and Engineering, 2021, 37 (2): 76- 84
19 LIU J, WU X Research of emergency feeder bus scheme for urban rail transit under unexpected incident[J]. IOP Conference Series: Materials Science and Engineering, 2019, 688 (4): 044040
doi: 10.1088/1757-899X/688/4/044040
20 袁振洲, 刘立强, 王佳冬, 等 考虑不均匀发车间隔的高铁接运公交时刻表与车辆调度优化[J]. 北京交通大学学报, 2021, 45 (4): 44- 53
YUAN Zhenzhou, LIU Liqiang, WANG Jiadong, et al Feeder bus timetabling and vehicle scheduling optimization for high-speed railway station with uneven departure interval[J]. Journal of Beijing Jiaotong University, 2021, 45 (4): 44- 53
doi: 10.11860/j.issn.1673-0291.20200094
21 王海燕, 覃一如 广州市综合交通枢纽可达性评估[J]. 交通科学与工程, 2019, 35 (3): 97- 103
WANG Haiyan, QIN Yiru Accessibility assessment of comprehensive transportation junction in Guangzhou[J]. Journal of Transport Science and Engineering, 2019, 35 (3): 97- 103
doi: 10.3969/j.issn.1674-599X.2019.03.017
[1] 郭鹏,郝东辉,郑鹏,王祺欣. 考虑工人疲劳的双资源柔性作业车间调度优化[J]. 浙江大学学报(工学版), 2023, 57(9): 1804-1813.
[2] 李嫚嫚,孙加辉,丁楠,杨京帅. 考虑服务定价的选择性众包配送优化[J]. 浙江大学学报(工学版), 2023, 57(8): 1495-1504.
[3] 杨元维,张跃,高贤君,马冰洁,郭申奥,许磊. 顾及空间关系的3D LiDAR铁路支持装置自动提取[J]. 浙江大学学报(工学版), 2022, 56(10): 2066-2076.
[4] 孙宝凤,杨悦,史俊妍,郑黎黎. 考虑真实场景动态事件的动态取送货问题[J]. 浙江大学学报(工学版), 2020, 54(8): 1604-1612.
[5] 周炳海, 赵猛. 柔性Job Shops集成调度启发式算法[J]. 浙江大学学报(工学版), 2016, 50(6): 1073-1079.
[6] 刘杰, 王宇平. 一种基于单纯形法的改进中心引力优化算法[J]. 浙江大学学报(工学版), 2014, 48(7): 2-.
[7] 刘杰, 王宇平. 一种基于单纯形法的改进中心引力优化算法[J]. 浙江大学学报(工学版), 2014, 48(12): 2115-2122.
[8] 张华锋 卓成 周金芳 陈抗生. 环形行波振荡器电路模型分析与优化设计[J]. , 2009, 43(4): 634-640.
[9] 平玲娣 王继民 陈小平 刘祖根. 基于子图归并的全局优化调度算法[J]. J4, 2007, 41(11): 1823-1827.
[10] 罗平 姚立海 杨仕友 倪光正. 基于移动最小二乘法和粒子群算法的优化算法[J]. J4, 2006, 40(9): 1482-1485.
[11] 吴飞 肖鸿开 赵勇 庄越挺 叶朝阳. 大视场视频全景图生成研究[J]. J4, 2006, 40(3): 395-398.
[12] 张宇弘 王界兵 汪乐宇 严晓浪. SOC参数自动配置设计方法与功耗优化[J]. J4, 2005, 39(11): 1740-1745.