Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (8): 1680-1688    DOI: 10.3785/j.issn.1008-973X.2023.08.020
机械工程、能源工程     
磁悬浮无轴离心泵叶轮转子动力学特性
陈晓丹(),吴澳,赵睿杰*(),徐恩翔
江苏大学 流体机械工程技术研究中心,江苏 镇江 212013
Rotor dynamics of impeller in a magnetic suspension bearingless centrifugal pump
Xiao-dan CHEN(),Ao WU,Rui-jie ZHAO*(),En-xiang XU
Fluid Machinery Engineering Technology Research Center, Jiangsu University, Zhenjiang 212013, China
 全文: PDF(3524 KB)   HTML
摘要:

为了实现磁悬浮无轴离心泵在高速工况下的稳定悬浮,探究离心泵水力激振力对叶轮转子悬浮特性的影响. 对于电机系统,采用虚位移方法构建电机处于转子偏心状态下的悬浮力数学模型并采用有限元法(FEM)进行验证;对于离心泵系统,应用计算流体力学(CFD)方法进行离心泵内部流场数值模拟,重点探究叶轮处于不同轴向、径向悬停位置下的水力激振力特性,同时探究叶轮在不同转速工况下的运行特性;结合现代控制理论中的矢量控制策略,在Matlab/Simulink环境下实现磁悬浮无轴离心泵叶轮转子的动态稳定悬浮. 研究结果表明:在体积流量14 m3/h和扬程20 m的工况下,当电机在转速0~6000 r/min运行时,叶轮转子径向偏移小于250 μm,远小于转子和定子间气隙4 mm,可见所建立的磁悬浮无轴离心泵系统能实现高可靠性的悬浮运行.

关键词: 无轴离心泵磁悬浮有限元法(FEM)计算流体力学(CFD)水力激振矢量控制    
Abstract:

The effect of flow-induced force on the stability of impeller rotor in a magnetic suspension bearingless centrifugal pump was studied in order to achieve stable suspension performance at high rotation speed. For the motor system, a mathematical model based on the principle of virtual displacement method was developed to calculate the magnetic suspension force of the motor when the rotor was eccentric, and the finite element method (FEM) was used to verify the proposed model. Meanwhile, for the centrifugal pump system, the flow field was simulated based on the computational fluid dynamics (CFD) method. The hydralic excitation force characteristics of the impeller in different axial and radial hovering positions were studied, and the operating characteristics of the impeller at different speed conditions were also explored. Finally, combined with vector control methods in modern control theory, the dynamic stable suspension of the impeller in magnetic suspension bearingless centrifugal pump was conducted on the Matlab/Simulink software platform. Results show that the radial vibration of the impeller rotor was controlled below 250 μm, which was far smaller than the 4 mm of air gap between the rotor and stator when the motor rotated at 0~6000 r/min with the designed conditions of volume flow rate of 14 m3/h and head of 20 m. It is indicated that the magnetic suspension bearingless centrifugal pump system can achieve high-reliability suspension operation with high reliability.

Key words: bearingless centrifugal pump    magnetic suspension    finite element method (FEM)    computational fluid dynamics(CFD)    flow-inducted vibration    vector control
收稿日期: 2022-10-12 出版日期: 2023-08-31
CLC:  TH 311  
基金资助: 国家自然科学基金资助项目(52176038);江苏省重点研发计划资助项目(BE2021073)
通讯作者: 赵睿杰     E-mail: 2212011003@stmail.ujs.edu.cn;rjzhao@ujs.edu.cn
作者简介: 陈晓丹(1998—),女,硕士生,从事流体机械内流特性、永磁电机电磁性能研究. orcid.org/0000-0001-9371-8887.E-mail: 2212011003@stmail.ujs.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈晓丹
吴澳
赵睿杰
徐恩翔

引用本文:

陈晓丹,吴澳,赵睿杰,徐恩翔. 磁悬浮无轴离心泵叶轮转子动力学特性[J]. 浙江大学学报(工学版), 2023, 57(8): 1680-1688.

Xiao-dan CHEN,Ao WU,Rui-jie ZHAO,En-xiang XU. Rotor dynamics of impeller in a magnetic suspension bearingless centrifugal pump. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1680-1688.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.020        https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1680

图 1  磁悬浮无轴离心泵结构图
图 2  径向悬浮力产生原理
图 3  磁悬浮无轴离心泵的控制系统
结构参数 变量 数值
叶片数 Z 6
叶轮进口直径 ${D_{10}}$/mm 36
叶片出口角 ${\beta _{\text{1}}}$/(°) 25
叶轮出口直径 ${D_{11}}$/mm 70
叶片包角 $\alpha _1$/(°) 120
叶轮出口宽度 ${b_2}$/mm 10
泵进口直径 $ {D_{{\text{01}}}} $/mm 40
蜗壳基圆直径 ${D_0}$/mm 78
泵出口直径 ${D_{02}}$/mm 36
蜗壳出口宽度 ${b_3}$/mm 18
表 1  离心泵结构设计参数
图 4  离心泵的水力模型与网格造型
图 5  网格无关性分析
结构参数 变量 数值
定子外径 ${D_1}$/mm 170
气隙长度 ${g_{\text{s}}}$/mm 4
定子内径 ${D_{{\text{i1}}}}$/mm 76
转子外径 ${D_2}$/mm 68
永磁体厚度 ${L_{\text{m}}}$/mm 4
转子内径 ${D_{{\text{i2}}}}$/mm 30
转矩绕组匝数 ${N_4}$/匝 120
转子轴长 $L$/mm 30
悬浮绕组匝数 ${N_2}$/匝 120
表 2  电机结构设计参数
图 6  BPMSM磁场分布图
I/A F1/N F2/N e0/%
1 32.61 31.69 4.04
2 65.22 62.59 4.06
3 97.81 92.16 5.71
4 130.41 120.02 7.82
5 163.02 148.07 8.93
6 195.62 169.96 12.80
表 3  有限元仿真与理论计算的总悬浮力对比结果
图 7  有限元仿真与理论计算的悬浮分力对比结果图
图 8  叶轮偏移方向示意图
图 9  离心泵内部流速分布图
图 10  模型泵效率、扬程曲线图
图 11  叶轮径向水力激振力 ${F_{\text{r}}}$时域分布图
图 13  叶轮径向水力激振力分量 ${F_{y}}$时频域分布图
图 12  叶轮径向水力激振力分量 ${F_{x}}$时频域分布图
图 14  不同转速下离心泵的效率、径向力分布图
图 15  系统转矩、转速响应曲线
图 16  未加载离心泵时系统径向位移仿真结果
图 17  加载离心泵时系统径向位移仿真结果
1 LI W, JI L L, SHI W D, et al Correlation research of rotor-stator interaction and shafting vibration in a mixed-flow pump[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39 (1): 1- 12
2 CHEN Z H, SHI W D, ZHANG D S, et al Experimental study on cavitation characteristics of mixed-flow pump during startup[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37 (9): 758- 762
3 LI W, JI L L, SHI W D, et al Fluid-structure interaction study of a mixed-flow pump impeller during startup[J]. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 2018, 35 (1): 18- 34
4 LIU Y Y, TAN L, YUE H, et al Energy performance and flow patterns of a mixed-flow pump with different tip clearance sizes[J]. Energies, 2017, 10 (1): 191
5 XUE R, LIN X Y, ZHANG B L, et al CFD and energy loss model analysis of high-speed centrifugal pump with low specific speed[J]. Applied Sciences, 2022, 12 (15): 1- 12
6 周以松, 孔繁余, 操瑞嘉, 等 屏蔽泵冷却循环回路热流耦合[J]. 排灌机械工程学报, 2019, 37 (4): 298- 301
ZHOU Yi-song, KONG Fan-yu, CAO Rui-jia, et al Thermal-fluid coupling of cooling cycle loop in canned-motor pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37 (4): 298- 301
7 贾红云, 张涛, 曹永娟 高速无轴承永磁电机设计与分析[J]. 电机与控制应用, 2017, 44 (12): 106- 111
JIA Hong-yun, ZHANG Tao, CAO Yong-juan, et al Design and analysis of high-speed bearingless permanent magnet motors[J]. Electric Machines and Control Application, 2017, 44 (12): 106- 111
doi: 10.3969/j.issn.1673-6540.2017.12.018
8 WEINREB B S, NOH M, FYLER D C, et al Design and implementation of a novel interior permanent magnet bearingless slice motor[J]. IEEE Transactions on Industry Applications, 2021, 57 (6): 6774- 6782
doi: 10.1109/TIA.2021.3080663
9 PERALTA P, WELLERDIECK T, STEINERT D, et al Ultra-high temperature (250 ℃) bearingless permanent magnet pump for aggressive fluids[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22 (5): 2392- 2394
doi: 10.1109/TMECH.2017.2729618
10 TUEYSUEZ A, ACHTNICH T, ZWYSSIG C, et al A 300 000 r/min magnetically levitated reaction wheel demonstrator[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (8): 6404- 6407
11 WANG Z, CAO X, DENG Z, et al Modeling and characteristic investigation of axial reluctance force for bearingless switched reluctance motor[J]. IEEE Transactions on Industry Applications, 2021, 57 (5): 5215- 5226
doi: 10.1109/TIA.2021.3099097
12 PEI T, LI D, LIU J, et al Review of bearingless synchronous motors: principle and topology[J]. IEEE Transactions on Transportation Electrification, 2022, 8 (3): 3489- 3502
doi: 10.1109/TTE.2022.3164420
13 SUN X D, SU B K, WANG S H, et al Performance analysis of suspension force and torque in an IBPMSM With V-Shaped PMs for flywheel batteries[J]. IEEE Transactions on Magnetics, 2018, 54 (11): 1- 4
14 孙宇新, 吴昊洋, 施凯, 等 新型双绕组无轴承磁通切换永磁电机的设计与分析[J]. 排灌机械工程学报, 2017, 35 (12): 1096- 1104
SUN Yu-xin, WU Hao-yang, SHI Kai, et al Design and analysis of novel double-winding bearingless flux-switching permanent magnet machine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35 (12): 1096- 1104
15 ZHANG T, CHEN J, ZHU W Suspension performance analysis on the novel hybrid stator type bearingless switched reluctance motor[J]. IEEE Transactions on Magnetics, 2021, 57 (6): 1- 4
doi: 10.1109/TMAG.2021.3077923
16 PUENTENER P, SCHUCK M, KOLAR J W The influence of impeller geometries on hemolysis in bearingless centrifugal pumps[J]. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1: 316- 323
doi: 10.1109/OJEMB.2020.3037507
17 NOH M, GRUBER W, TRUMPER D L Hysteresis bearingless slice motors with homopolar flux-biasing[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22 (5): 2308- 2318
doi: 10.1109/TMECH.2017.2740429
18 ZHU H, LI F Optimization design of bearingless permanent-magnet slice motor[J]. IEEE Transactions on Applied Superconductivity, 2016, 26 (4): 5202804
19 DING H, ZHU H, HUA Y Optimization design of bearingless synchronous reluctance motor[J]. IEEE Transactions on Applied Superconductivity, 2018, 28 (3): 5202905
20 QIAN B, CHEN J P, WU P, et al Investigation on inner flow quality assessment of centrifugal pump based on Euler head and entropy production analysis[J]. IOP Conference Series: Earth and Environmental Science, 2019, 240 (9): 092001
21 李峰. 基于流场模拟的高速离心泵转子动力学分析 [D]. 武汉: 武汉工程大学, 2022.
LI Feng. Dynamic analysis of high-speed centrifugal pump rotor based on flow field simulation [D]. Wuhan: Wuhan Institute of Technology, 2022.
[1] 王雄东,彭章明,潘华辰,田晓庆,朱泽飞,冷建兴. 双桨无人船转弯半径预报[J]. 浙江大学学报(工学版), 2021, 55(10): 1930-1936.
[2] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[3] 吴海同,周瑾,纪历. 基于单相坐标变换的磁悬浮转子不平衡补偿[J]. 浙江大学学报(工学版), 2020, 54(5): 963-971.
[4] 关旭东,周瑾,金超武,徐园平. 重载磁悬浮轴承-转子自适应控制性能[J]. 浙江大学学报(工学版), 2020, 54(4): 662-670.
[5] 高用祥,洪都,成有为,王丽军,李希. 连续三相喷射环流反应器的实验和数值模拟[J]. 浙江大学学报(工学版), 2019, 53(5): 997-1005.
[6] 王悦荟,刘聪,王鹏飞,许忠斌,阮晓东,付新. 蒸汽发生器致畸变入流对核主泵流动性能的影响[J]. 浙江大学学报(工学版), 2019, 53(11): 2076-2084.
[7] 费飞,刘申宇,吴常铖,杨德华,周升丽. 基于磁悬浮结构的人体动能采集技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2215-2222.
[8] 陆燕宁,章洪涛,许岩韦,朱燕群,万凯迪,邵哲如,王智化. 烟气再循环对生物质炉排炉燃烧影响的数值模拟[J]. 浙江大学学报(工学版), 2019, 53(10): 1898-1906.
[9] 张承谦, 赵朋, 颉俊, 夏能, 傅建中. 抗磁性高密度物质的磁悬浮密度测量方法[J]. 浙江大学学报(工学版), 2018, 52(4): 613-618.
[10] 崔恒斌, 周瑾, 董继勇, 金超武. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版), 2018, 52(4): 635-640.
[11] 夏能, 颉俊, 张承谦, 赵朋, 傅建中. 抗磁性物质的磁悬浮仿真及密度测量[J]. 浙江大学学报(工学版), 2018, 52(3): 473-478.
[12] 陈伟, 秦仙蓉, 杨志刚. 塔式起重机塔身和起重臂的风载荷特征分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2262-2270.
[13] 袁庆伟, 赵荣祥. 改善IPMSM动静态性能的定子磁链矢量控制方案[J]. 浙江大学学报(工学版), 2017, 51(12): 2420-2428.
[14] 刘可安, 田红旗, 刘勇. 直线感应电机过无次级感应板区检测[J]. 浙江大学学报(工学版), 2016, 50(12): 2409-2417.
[15] 刘统, 龚国芳, 石卓, 彭左, 吴伟强. TBM刀盘驱动系统单神经元模糊同步控制[J]. 浙江大学学报(工学版), 2016, 50(11): 2207-2214.