Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (1): 96-108    DOI: 10.3785/j.issn.1008-973X.2024.01.011
交通工程、土木工程     
道路网络多阶段抗灾能力优化模型构建与应用
刘鹏1(),路庆昌1,*(),秦汉1,崔欣2
1. 长安大学 电子与控制工程学院,陕西 西安 710064
2. 大连海事大学 航运经济与管理学院,辽宁 大连 116026
Road network multi-stage disaster resistance optimization model and its application
Peng LIU1(),Qingchang LU1,*(),Han QIN1,Xin CUI2
1. School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China
2. School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China
 全文: PDF(1451 KB)   HTML
摘要:

为了降低路网抗灾成本并保障路网快速连通,研究道路交通网络多阶段灾害应对能力优化的问题. 建立综合灾前应急工作站点选址和灾后路网恢复决策的3层规划模型,其中特别考虑了应急救援设施和后勤保障资源在耗尽性、运输方式和恢复作用上的差异,定量建模了两者间的相互协作关系. 通过综合双层遗传算法和Frank-Wolfe算法,获得模型的近似最优解. 研究结果表明,与未考虑灾后恢复过程的灾前布设决策和未考虑后勤保障资源的灾前布设决策相比,最优决策可以分别降低10.96%的后勤保障资源运输成本和11.51%的加权恢复成本. 后勤保障资源和应急救援设施布设数量共同影响路网的恢复效果,忽略两者间的协作关系,将会高估应急救援设施布设数量增加对恢复效果的影响.

关键词: 交通工程道路交通网络抗灾能力优化3层优化模型遗传算法    
Abstract:

The optimization problem of multi-stage disaster response capacity of road transportation network was analyzed in order to reduce the cost of disaster response for road network and ensure the rapid connectivity of road network. A three-layer planning model for the selection of comprehensive pre-disaster emergency workstations and post-disaster road network recovery decisions was established. The differences in exhaustibility, transportation mode and recovery effect of emergency rescue equipments and logistics support resources were specially considered, and the interdependent relationship between the two was quantitatively modeled. An approximate optimal solution for the model was obtained by combining the bi-level genetic algorithm and the Frank-Wolfe algorithm. The research results show that the optimal decisions can respectively reduce the transportation cost of logistics support resources by 10.96% and the weighted recovery cost by 11.51% compared with the pre-disaster deployment decisions not considering the post-disaster recovery process and the decisions not considering the pre-disaster layout decision of logistics support resources. The quantity of logistics support resources and emergency rescue equipments layout jointly affect the recovery effect of the road network. The impact of increasing the quantity of emergency rescue equipments on the recovery effect will be overestimated if the interdependent relationship between the two is neglected.

Key words: traffic engineering    road traffic network    disaster resilience optimization    tri-level programming model    genetic algorithm
收稿日期: 2023-03-08 出版日期: 2023-11-07
CLC:  U 491  
基金资助: 国家自然科学基金资助项目(71971029);霍英东教育基金会高等院校青年教师基金资助项目(171069);陕西省自然科学基础研究计划资助项目(2021JC-28)
通讯作者: 路庆昌     E-mail: pliu@chd.edu.cn;qclu@chd.edu.cn
作者简介: 刘鹏(1998—),男,硕士生,从事交通网络建模与优化的研究. orcid.org/0009-0008-3934-8991. E-mail: pliu@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘鹏
路庆昌
秦汉
崔欣

引用本文:

刘鹏,路庆昌,秦汉,崔欣. 道路网络多阶段抗灾能力优化模型构建与应用[J]. 浙江大学学报(工学版), 2024, 58(1): 96-108.

Peng LIU,Qingchang LU,Han QIN,Xin CUI. Road network multi-stage disaster resistance optimization model and its application. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 96-108.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.011        https://www.zjujournals.com/eng/CN/Y2024/V58/I1/96

图 1  3层模型求解算法的流程图
图 2  下层遗传算法解码过程的流程图
图 3  贵州省区域高速公路网
$ a $ $ {z_{a,{t_0}}} $/min $ {C_{a,{t_0}}} $/( $ {\text{pcu}} \cdot {{\text{h}}^{ - 1}} $) $ {l_a} $/km $ a $ $ {z_{a,{t_0}}} $/min $ {C_{a,{t_0}}} $/( $ {\text{pcu}} \cdot {{\text{h}}^{ - 1}} $) $ {l_a} $/km $ a $ $ {z_{a,{t_0}}} $/min $ {C_{a,{t_0}}} $/( $ {\text{pcu}} \cdot {{\text{h}}^{ - 1}} $) $ {l_a} $/km
1 33 4 200 40 10 62 4 200 89 19 18 4 200 23
2 65 4 200 104 11 23 4 200 32 20 46 4 200 52
3 25 4 200 32 12 76 4 200 95 21 45 4 200 61
4 22 4 200 28 13 56 4 200 70 22 29 4 200 39
5 50 4 200 69 14 56 4 200 74 23 61 4 200 79
6 76 4 200 92 15 45 4 200 56 24 81 4 200 106
7 20 4 200 26 16 59 4 200 71 25 61 4 200 74
8 42 4 200 54 17 44 4 200 61 26 85 4 200 108
9 34 4 200 47 18 28 4 200 33 27 45 4 200 60
表 1  贵州省区域高速公路网的路段参数
图 4  路网各节点的客流介数
$ a $ $ {d_a} $/% $ a $ $ {d_a} $/% $ a $ $ {d_a} $/%
1 100 6 100 13 100
2 50 7 75 14 25
3 25 8 25 15 50
4 75 9 75 16 25
5 100 11 75 17 50
表 2  受损路段的参数
B 站点选址
最优决策P 决策P1 决策P2
1 11 11 9
2 10,17 10,11 4,8
3 4,7,11 4,11,17 3,5,8
4 4,7,8,11 4,10,13,17 3,5,7,9
5 3,4,7,8,9 4,7,10,11,17 3,5,7,8,9
表 3  不同预算下的灾前工作站点选址决策
图 5  不同预算下不同灾前布设方案的灾后路网恢复效果
图 6  B = 2下灾前布设决策P和决策P2对应的灾后路网恢复排程甘特图
图 7  B = 2下不同 $ {R_{{\text{E}},u}} $最优恢复决策的灾后路网恢复效果
图 8  B = 2下不同 $ {R_{{\text{M}},u}} $最优恢复决策的灾后路网恢复效果
图 9  B = 2下不同 $ {R_{{\text{E}},u}} $的未考虑后勤保障资源的恢复决策灾后路网恢复效果
1 ÇOBAN B, SCAPARRA M P, O'HANLEY J R Use of OR in earthquake operations management: a review of the literature and roadmap for future research[J]. International Journal of Disaster Risk Reduction, 2021, 65: 102539
doi: 10.1016/j.ijdrr.2021.102539
2 AKBARI V, SADATI M E H, KIAN R A decomposition-based heuristic for a multicrew coordinated road restoration problem[J]. Transportation Research Part D: Transport and Environment, 2021, 95: 102854
doi: 10.1016/j.trd.2021.102854
3 AJAM M, AKBARI V, SALMAN F S Routing multiple work teams to minimize latency in post-disaster road network restoration[J]. European Journal of Operational Research, 2022, 300 (1): 237- 254
doi: 10.1016/j.ejor.2021.07.048
4 LI X, ZHAO Z, ZHU X, et al Covering models and optimization techniques for emergency response facility location and planning: a review[J]. Mathematical Methods of Operations Research, 2011, 74 (3): 281- 310
doi: 10.1007/s00186-011-0363-4
5 GUO J, DU Q, HE Z A method to improve the resilience of multimodal transport network: location selection strategy of emergency rescue facilities[J]. Computers and Industrial Engineering, 2021, 161: 107678
doi: 10.1016/j.cie.2021.107678
6 BABABEIK M, KHADEMI N, CHEN A Increasing the resilience level of a vulnerable rail network: the strategy of location and allocation of emergency relief trains[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 119: 110- 128
doi: 10.1016/j.tre.2018.09.009
7 FENG J R, GAI W, LI J Multi-objective optimization of rescue station selection for emergency logistics management[J]. Safety Science, 2019, 120: 276- 282
doi: 10.1016/j.ssci.2019.07.011
8 LI Z, JIN C, HU P, et al Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty[J]. Reliability Engineering and System Safety, 2019, 188: 503- 514
doi: 10.1016/j.ress.2019.03.052
9 LIU K, ZHAI C, DONG Y Optimal restoration schedules of transportation network considering resilience[J]. Structure and Infrastructure Engineering, 2021, 17 (8): 1141- 1154
doi: 10.1080/15732479.2020.1801764
10 MAYA-DUQUE P A, DOLINSKAYA I S, SÖRENSEN K Network repair crew scheduling and routing for emergency relief distribution problem[J]. European Journal of Operational Research, 2016, 248 (1): 272- 285
doi: 10.1016/j.ejor.2015.06.026
11 MORENO A, MUNARI P, ALEM D A branch-and-benders-cut algorithm for the crew scheduling and routing problem in road restoration[J]. European Journal of Operational Research, 2019, 275 (1): 16- 34
doi: 10.1016/j.ejor.2018.11.004
12 ZHANG Z, JI T, WEI H H Assessment of post-earthquake resilience of highway–bridge networks by considering downtime due to interaction of parallel restoration actions[J]. Structure and Infrastructure Engineering, 2023, 19 (5): 589- 605
doi: 10.1080/15732479.2021.1961826
13 YAN S, LIN C K, CHEN S Y Optimal scheduling of logistical support for an emergency roadway repair work schedule[J]. Engineering Optimization, 2012, 44 (9): 1035- 1055
doi: 10.1080/0305215X.2011.628389
14 CHANG Y, WILKINSON S, SEVILLE E, et al Resourcing for a resilient post-disaster reconstruction environment[J]. International Journal of Disaster Resilience in the Built Environment, 2010, 1 (1): 65- 83
doi: 10.1108/17595901011026481
15 LI S, MA Z, TEO K L A new model for road network repair after natural disasters: integrating logistics support scheduling with repair crew scheduling and routing activities[J]. Computers and Industrial Engineering, 2020, 145: 106506
doi: 10.1016/j.cie.2020.106506
16 HACKL J, ADEY B T, LETHANH N Determination of near-optimal restoration programs for transportation networks following natural hazard events using simulated annealing[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33 (8): 618- 637
doi: 10.1111/mice.12346
17 SANCI E, DASKIN M S Integrating location and network restoration decisions in relief networks under uncertainty[J]. European Journal of Operational Research, 2019, 279 (2): 335- 350
doi: 10.1016/j.ejor.2019.06.012
18 NOGAL M, O'CONNOR A, CAULFIELD B, et al Resilience of traffic networks: from perturbation to recovery via a dynamic restricted equilibrium model[J]. Reliability Engineering and System Safety, 2016, 156: 84- 96
doi: 10.1016/j.ress.2016.07.020
19 左逢源, 王晓峰, 牛进, 等 求解最小费用最大流问题的信念传播算法[J]. 计算机应用研究, 2021, 38 (7): 1998- 2002
ZUO Feng-yuan, WANG Xiao-feng, NIU Jin, et al Belief propagation algorithm for solving minimum cost maximum flow problem[J]. Application Research of Computers, 2021, 38 (7): 1998- 2002
doi: 10.19734/j.issn.1001-3695.2020.10.0357
20 李兆隆. 基于弹复性的公路网络灾后恢复决策优化研究[D]. 大连: 大连理工大学, 2019: 1-172.
LI Zhao-long. Research on the resilience-based decision optimization of the post-disaster road network recovery [D]. Dalian: Dalian University of Technology, 2019: 1-172.
21 路庆昌, 崔欣, 谢驰, 等 城市轨道交通网络关键站点识别方法对比与分析[J]. 北京交通大学学报, 2022, 46 (3): 18- 25
LU Qing-chang, CUI Xin, XIE Chi, et al Comparison and analysis of identification methods for critical stations in urban rail transit networks[J]. Journal of Beijing Jiaotong University, 2022, 46 (3): 18- 25
[1] 卢凯,尹帅帅,江书妍,周志洁,李青. 考虑交织路段掉头车流的邻近交叉口信号协调控制[J]. 浙江大学学报(工学版), 2023, 57(8): 1618-1628.
[2] 李煌,葛红娟,马莹,王永帅. 基于超平面NSGA-II的双输入双降压逆变器系统参数优化设计[J]. 浙江大学学报(工学版), 2023, 57(3): 606-615.
[3] 查浩,费少华,傅云,吕震,朱伟东. 基于EtherCAT总线的六维力传感器在线解耦技术[J]. 浙江大学学报(工学版), 2023, 57(10): 2042-2050.
[4] 潘义勇,管星宇. 基于分位数回归的随机优化速度跟驰模型[J]. 浙江大学学报(工学版), 2022, 56(8): 1553-1559.
[5] 赵永胜,李瑞祥,牛娜娜,赵志勇. 数字孪生驱动的机身形状控制方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1457-1463.
[6] 侯越,韩成艳,郑鑫,邓志远. 基于时空融合图卷积的交通流数据修复方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1394-1403.
[7] 孙宝凤,张新康,李根道,刘娇娇. 第II类机器人混流装配线的平衡与排序联合决策[J]. 浙江大学学报(工学版), 2022, 56(6): 1097-1106.
[8] 余佳洁,季彦婕,卜卿,郑岳标. 考虑断点成本的长干线分段绿波控制方法[J]. 浙江大学学报(工学版), 2022, 56(4): 640-648.
[9] 张昕莹,陈璐,杨雯惠. 考虑系统时变效应与预防性维护的平行机调度[J]. 浙江大学学报(工学版), 2022, 56(2): 408-418.
[10] 胡鸿昊,李秀娟,于俊锋,张清周,柳景青. 基于耦合模拟的污水管网入流入渗定量识别[J]. 浙江大学学报(工学版), 2022, 56(11): 2313-2320.
[11] 邹贻权,黄浩洲,夏绪勇,王鑫. 成本导向下基于遗传算法的曲面幕墙设计优化[J]. 浙江大学学报(工学版), 2022, 56(10): 2049-2056.
[12] 向胜涛,王达. 基于改进量子遗传算法的模型交互修正方法[J]. 浙江大学学报(工学版), 2022, 56(1): 100-110.
[13] 曹宁博,赵利英. 路段环境自动驾驶汽车通行权决策方法[J]. 浙江大学学报(工学版), 2022, 56(1): 118-127.
[14] 鞠飞,庄伟超,王良模,刘经兴,王群. 混合动力汽车经济型巡航的车速规划策略[J]. 浙江大学学报(工学版), 2021, 55(8): 1538-1547.
[15] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.