Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 109-119    DOI: 10.3785/j.issn.1008-973X.2025.01.011
机械工程、能源工程     
电梯安全钳制动块与导轨接触应力的有限元计算方法
吴洋1(),肖磊2,王玮彦2,许金鑫2,杜原2,杨泊莘1,安琦1,*()
1. 华东理工大学 机械与动力工程学院,上海 200237
2. 迅达(中国)电梯有限公司,上海 201807
Finite element calculation method of contact stress between elevator safety gear brake block and guide rail
Yang WU1(),Lei XIAO2,Weiyan WANG2,Jinxin XU2,Yuan DU2,Boxin YANG1,Qi AN1,*()
1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Schindler (China) Elevator Limited Company, Shanghai 201807, China
 全文: PDF(2726 KB)   HTML
摘要:

为了研究电梯安全钳的制动块与导轨接触应力的分布规律,结合有限单元法与赫兹接触公式提出精确且高效的计算方法. 通过非线性刚度矩阵建立楔块-滚子-导轨平衡方程,应用接触理论及牛顿-拉夫逊(N-R)法求解平衡方程. 考虑制动楔块与导轨的相对运动,进行热传导方程修正,采用伽辽金法求解瞬态温度场. 通过热力耦合迭代精确计算摩擦面接触应力分布. 结果表明,制动摩擦面的最高温度约为72.7 ℃,最大接触应力约为35 MPa,热效应对摩擦面接触应力的影响程度为两端区域大于中间区域;滚子位置上移会减小下端滚子的压力和摩擦面下端的接触应力;弹簧位置的下移或摩擦面位置的上移均会增大摩擦面下端的接触应力,摩擦面位置的上移会减小摩擦面上端的接触应力.

关键词: 安全钳制动块力学性能热力学分析接触应力有限元法    
Abstract:

An accurate and efficient calculation method was proposed by combining the finite element method and Hertz contact formula, to study the contact stress distribution between elevator safety gear brake block and guide rail. A balance equation among wedges, rollers and guide rail was established with a nonlinear stiffness matrix, and the equation was solved by the Newton-Raphson (N-R) method combined with contact theory. The heat conduction equation was modified because of the relative motion between the wedge and the guide rail, and the transient temperature field was calculated by the Galerkin method. The accurate calculation of the contact stress distribution of the friction surface was realized through thermal-mechanical coupling iteration. Results showed that the maximum temperature of the friction surface was about 72.7 ℃ during the braking process, while the maximum contact stress was about 35 MPa. The thermal effect influence on the contact stress was greater at both ends of the friction surface than at the middle area. When the rollers’ position was moved up, both the pressure of the lower roller and the contact stress of the lower-end friction surface were reduced. When the position of the spring was moved down or the position of the friction surface was moved up, the contact stress at the lower end of the friction surface was increased, and the contact stress at the upper end of the friction surface was reduced by the upward movement of the friction surface.

Key words: safety gear brake block    mechanical performance    thermal analysis    contact stress    finite element method
收稿日期: 2023-11-24 出版日期: 2025-01-18
CLC:  TU 857  
通讯作者: 安琦     E-mail: 1269039606@qq.com;anqi@ecust.edu.cn
作者简介: 吴洋(1999—),男,硕士生,从事工程摩擦学与流体润滑研究. orcid.org/0009-0000-7684-913X. E-mail:1269039606@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吴洋
肖磊
王玮彦
许金鑫
杜原
杨泊莘
安琦

引用本文:

吴洋,肖磊,王玮彦,许金鑫,杜原,杨泊莘,安琦. 电梯安全钳制动块与导轨接触应力的有限元计算方法[J]. 浙江大学学报(工学版), 2025, 59(1): 109-119.

Yang WU,Lei XIAO,Weiyan WANG,Jinxin XU,Yuan DU,Boxin YANG,Qi AN. Finite element calculation method of contact stress between elevator safety gear brake block and guide rail. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 109-119.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.011        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/109

图 1  楔形渐进式安全钳的结构示意图
图 2  安全钳的工作过程示意图
图 3  六节点三角单元及面积坐标
图 4  楔块的边界条件
接触对状态约束条件校核条件
传动楔块上
表面?钳体
接触$ {g_1} = {V^j_{\text{C}}} = 0$$ {{\boldsymbol{F}}^j_{\text{N}}}\cdot {\boldsymbol{n}} < 0 $
分离$ {{\boldsymbol{F}}^j_{\text{N}}} = {\boldsymbol{0}} $$ {{{V}}^j_{\text{C}}} < 0 $
传动楔块下
表面?钳体
接触$ {g_2} = {V^j_{\text{C}}}+w = 0 $$ {{\boldsymbol{F}}^j_{\text{N}}}\cdot {\boldsymbol{n}} < 0 $
分离$ {{\boldsymbol{F}}^j_{\text{N}}} = {\boldsymbol{0}} $$ -{{{V}}^j_{\text{C}}} - w < 0 $
制动楔块上
表面?钳体
接触$ {g_3} = {V^j_{\text{A}}} = 0 $$ {{\boldsymbol{F}}^j_{\text{N}}}\cdot {\boldsymbol{n}} < 0 $
分离$ {{\boldsymbol{F}}^j_{\text{N}}} = {\boldsymbol{0}} $$ {{{V}}^j_{\text{A}}} < 0 $
制动楔块右
表面?导轨
接触$ \begin{array}{c} {g_4} = {U^j_{\text{A}}} - {U^j_{\text{G}}} = 0,\\ {{\boldsymbol{F}}^j_{\text{f}}} = - f({{\boldsymbol{F}}^j_{\text{N}}}\cdot {\boldsymbol{n}}) {\boldsymbol{n}}_{\mathrm{v}}\end{array}$$ {{\boldsymbol{F}}^j_{\text{N}}}\cdot {\boldsymbol{n}} < 0 $
分离$ {{\boldsymbol{F}}^j_{\text{N}}} = {\boldsymbol{0}} $,$ {{\boldsymbol{F}}^j_{\text{f}}} = {\boldsymbol{0}} $$ {{{{U}}^j_{\text{A}}} - {{{U}}^j_{\text{G}}}} < 0 $
传动楔块?
滚子?制动楔块
接触$ {g_4} = {U^{j}_{\text{A}}} - {U^{j}_{\text{C}}} - {Y^{j}} = 0 $$ {{\boldsymbol{F}}^j_{\text{N}}}\cdot {\boldsymbol{n}} < 0 $
分离$ {{\boldsymbol{F}}^j_{\text{N}}} = {\boldsymbol{0}} $$ {Y^j} = 0 $
表 1  安全钳的接触类型
图 5  制动过程中导轨单元控制体中的内能变化
图 6  安全钳热力耦合的求解流程
图 7  安全钳和导轨的几何参数
材料E/GPaμα/10?6kxy/(W·m?1·℃?1)c/(J·kg?1·℃?1)
Q235(20 ℃)2110.3010.651.6450
Q235(100 ℃)2070.3012.248.9483
QT600(20 ℃)1690.2711.152.2503
QT600(100 ℃)1660.2713.257.2537
GCr15(20 ℃)2100.30
表 2  安全钳和导轨的材料参数
图 8  温度与接触力的关系曲线
图 9  制动时间为80 ms时的温度、位移与应力云图
图 10  不同滚子位置下的力与温度分布图
图 11  工作后的制动楔块实物图
图 12  不同弹簧位置下的滚子压力与摩擦面接触应力分布图
图 13  不同摩擦面位置的滚子压力与摩擦面接触应力分布图
1 LONKWIC P Influence of friction drive lift gears construction on the length of braking distance[J]. Chinese Journal of Mechanical Engineering, 2015, 28: 363- 368
doi: 10.3901/CJME.2015.0108.009
2 刘磊. 24 t货梯瞬时安全钳的力学性能研究[D]. 天津: 天津大学, 2016: 1−58.
LIU Lei. Study on mechanical properties of instantaneous safety gear of 24 t freight [D]. Tianjin: Tianjin University, 2016: 1−58.
3 谈伟荣. 直驱电梯安全钳防坠装置的结构设计与仿真分析[D]. 兰州: 兰州理工大学, 2020: 1−55.
TAN Weirong. Structure design and simulation analysis of anti falling device of direct drive elevator safety gear [D]. Lanzhou: Lanzhou University of Technology, 2020: 1−55.
4 CHOI J, SEO H, SOHN S S, et al Size effects of brake pads on stick-slip phenomena[J]. Tribology International, 2023, 189: 108944
doi: 10.1016/j.triboint.2023.108944
5 PULECCHI T, MANES A, LISIGNOLI M, et al Digital filtering of acceleration data acquired during the intervention of a lift safety gears[J]. Measurement, 2010, 43 (4): 455- 468
doi: 10.1016/j.measurement.2009.12.004
6 REN F, LI B, LIANG X, et al Microstructure analysis of elevator brake base[J]. IOP Conference Series: Earth and Environmental Science, 2019, 233 (3): 032021
7 黄松檀. 电梯安全钳钳块表面设计及制动温升研究 [D]. 杭州: 浙江工业大学, 2018: 1−77.
HUANG Songtan. Research on the surface design of the block and the temperature rise of the brake of the safety gear [D]. Hangzhou: Zhejiang University of Technology, 2018: 1−77.
8 WANG Z, WEI J, WU L, et al Brake surface texture exploration and temperature control during braking in the new knee impact test[J]. Surface Review and Letters, 2023, 31 (3): 2450018
9 PENG Q, XU P, LI Y, et al Experiment research on emergency stop vibrations of key components in the friction vertical lifting system[J]. Shock and Vibration, 2022, 2022 (1): 7816270
10 LIU S, WEI D, ZHANG B, et al Modeling and simulation of macroscopic friction coefficient of brake pair considering particle flows and interface parameters[J]. Journal of Vibration Engineering and Technologies, 2023, 11: 2133- 2153
doi: 10.1007/s42417-022-00692-9
11 YAN X, LIN D, CHEN B, et al Study on the influence of three-body particles on the dynamic performance of braking system[J]. Tribology International, 2023, 189: 109013
doi: 10.1016/j.triboint.2023.109013
12 CANDEO S, LEONARDI M, GIALANELLA S, et al Influence of contact pressure and velocity on the brake behaviour and particulate matter emissions[J]. Wear, 2023, 514−515: 204579
doi: 10.1016/j.wear.2022.204579
13 MA X, PAN G, ZHANG P, et al Experimental evaluation of braking pad materials used for high-speed elevator[J]. Wear, 2021, 477: 203872
doi: 10.1016/j.wear.2021.203872
14 WAN Z, LIU X, WANG H, et al Research on the time-varying properties of brake friction (September 2018)[J]. IEEE Access, 2018, 6: 69742- 69749
doi: 10.1109/ACCESS.2018.2878776
15 WU A Z, SHI X, WENG L, et al Thermo-mechanical modeling and transient analysis of frictional braking of elevator safety gear[J]. Journal of Thermal Stresses, 2020, 43 (12): 1467- 1486
doi: 10.1080/01495739.2020.1820921
16 WANG H, LU C, XIE F, et al Analysis of emergency braking characteristics and prediction of fatigue life for elevator block brake based on thermal-structural coupling[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44: 441
doi: 10.1007/s40430-022-03744-z
17 BELLINI C, DI COCCO V, IACOVIELLO D, et al Temperature influence on brake pad friction coefficient modelisation[J]. Materials, 2024, 17 (1): 189
18 WANG D, YIN J, ZHU Z, et al Preparation of high friction brake shoe material and its tribological behaviors during emergency braking in ultra-deep coal mine hoist[J]. Wear, 2020, 458−459: 203391
doi: 10.1016/j.wear.2020.203391
19 RAO S V, VENKATARAMANA M, KUMAR A C S Friction and dry sliding wear properties of compact graphite iron at room temperature and 100 ℃[J]. Materials Today: Proceedings, 2021, 45: 3250- 3254
20 LIMMER F, BROOKS P C, GILKESON C, et al Tribo-oxidation of a brake friction couple under varying sliding conditions[J]. Tribology International, 2023, 185: 108536
doi: 10.1016/j.triboint.2023.108536
21 哈里斯, 克兹拉斯. 滚动轴承分析[M], 罗继伟, 马维, 等译. 北京: 机械工业出版社, 2009: 113−114.
[1] 王勇超,魏正英,贺鹏飞. 熔滴复合电弧增材制造2219铝合金组织与性能[J]. 浙江大学学报(工学版), 2024, 58(8): 1585-1595.
[2] 罗易飞,胡彬,赵鑫,温泽峰. 缩尺车轮-环轨滚动接触与磨耗特性仿真分析[J]. 浙江大学学报(工学版), 2024, 58(6): 1275-1284.
[3] 林小杰,徐家豪,孙鹏,钟崴,胡亚才. 基于相变材料的蒸汽卡诺电池热力学循环设计[J]. 浙江大学学报(工学版), 2024, 58(1): 161-168.
[4] 陈晓丹,吴澳,赵睿杰,徐恩翔. 磁悬浮无轴离心泵叶轮转子动力学特性[J]. 浙江大学学报(工学版), 2023, 57(8): 1680-1688.
[5] 李晓东,弓耀云,马顺利,陈恩亮,张振永. 具有特殊功能的钢结构节点的力学性能[J]. 浙江大学学报(工学版), 2023, 57(3): 522-529.
[6] 阮圣倩,王铁龙,陈士堃,刘毅,闫东明. 内掺PDMS对地聚合物性能和微观结构的影响[J]. 浙江大学学报(工学版), 2022, 56(7): 1302-1309.
[7] 金慧,袁大军,金大龙. 盾构掘进行为对盾壳-土体接触应力的影响[J]. 浙江大学学报(工学版), 2021, 55(6): 1036-1047.
[8] 詹志文,张凌新,邓见,邵雪明. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
[9] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[10] 黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.
[11] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[12] 童水光,何顺,童哲铭,李元松,徐征宇,方晓晖,谭达辉,钟玉伟. 基于导重法的叉车门架轻量化设计[J]. 浙江大学学报(工学版), 2020, 54(1): 33-39.
[13] 邱驰,黄建坤,胡雨村,郭小平,胡云卿. 灌溉对西北干旱荒漠区排土场边坡稳定的影响—以乌海市新星煤矿为例[J]. 浙江大学学报(工学版), 2019, 53(8): 1467-1477.
[14] 从硕,陈佳明,蔡景成,孙瑞松,董建华,郭飞. 加湿除湿脱盐系统的热力学分析及实验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 684-691.
[15] 曹文翰,龚俊,王宏刚,高贵,祁渊,杨东亚. 盖封密封磨损-热-应力耦合模拟与优化设计[J]. 浙江大学学报(工学版), 2019, 53(2): 258-267.