机械工程、能源工程 |
|
|
|
|
电梯安全钳制动块与导轨接触应力的有限元计算方法 |
吴洋1( ),肖磊2,王玮彦2,许金鑫2,杜原2,杨泊莘1,安琦1,*( ) |
1. 华东理工大学 机械与动力工程学院,上海 200237 2. 迅达(中国)电梯有限公司,上海 201807 |
|
Finite element calculation method of contact stress between elevator safety gear brake block and guide rail |
Yang WU1( ),Lei XIAO2,Weiyan WANG2,Jinxin XU2,Yuan DU2,Boxin YANG1,Qi AN1,*( ) |
1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China 2. Schindler (China) Elevator Limited Company, Shanghai 201807, China |
引用本文:
吴洋,肖磊,王玮彦,许金鑫,杜原,杨泊莘,安琦. 电梯安全钳制动块与导轨接触应力的有限元计算方法[J]. 浙江大学学报(工学版), 2025, 59(1): 109-119.
Yang WU,Lei XIAO,Weiyan WANG,Jinxin XU,Yuan DU,Boxin YANG,Qi AN. Finite element calculation method of contact stress between elevator safety gear brake block and guide rail. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 109-119.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.011
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I1/109
|
1 |
LONKWIC P Influence of friction drive lift gears construction on the length of braking distance[J]. Chinese Journal of Mechanical Engineering, 2015, 28: 363- 368
doi: 10.3901/CJME.2015.0108.009
|
2 |
刘磊. 24 t货梯瞬时安全钳的力学性能研究[D]. 天津: 天津大学, 2016: 1−58. LIU Lei. Study on mechanical properties of instantaneous safety gear of 24 t freight [D]. Tianjin: Tianjin University, 2016: 1−58.
|
3 |
谈伟荣. 直驱电梯安全钳防坠装置的结构设计与仿真分析[D]. 兰州: 兰州理工大学, 2020: 1−55. TAN Weirong. Structure design and simulation analysis of anti falling device of direct drive elevator safety gear [D]. Lanzhou: Lanzhou University of Technology, 2020: 1−55.
|
4 |
CHOI J, SEO H, SOHN S S, et al Size effects of brake pads on stick-slip phenomena[J]. Tribology International, 2023, 189: 108944
doi: 10.1016/j.triboint.2023.108944
|
5 |
PULECCHI T, MANES A, LISIGNOLI M, et al Digital filtering of acceleration data acquired during the intervention of a lift safety gears[J]. Measurement, 2010, 43 (4): 455- 468
doi: 10.1016/j.measurement.2009.12.004
|
6 |
REN F, LI B, LIANG X, et al Microstructure analysis of elevator brake base[J]. IOP Conference Series: Earth and Environmental Science, 2019, 233 (3): 032021
|
7 |
黄松檀. 电梯安全钳钳块表面设计及制动温升研究 [D]. 杭州: 浙江工业大学, 2018: 1−77. HUANG Songtan. Research on the surface design of the block and the temperature rise of the brake of the safety gear [D]. Hangzhou: Zhejiang University of Technology, 2018: 1−77.
|
8 |
WANG Z, WEI J, WU L, et al Brake surface texture exploration and temperature control during braking in the new knee impact test[J]. Surface Review and Letters, 2023, 31 (3): 2450018
|
9 |
PENG Q, XU P, LI Y, et al Experiment research on emergency stop vibrations of key components in the friction vertical lifting system[J]. Shock and Vibration, 2022, 2022 (1): 7816270
|
10 |
LIU S, WEI D, ZHANG B, et al Modeling and simulation of macroscopic friction coefficient of brake pair considering particle flows and interface parameters[J]. Journal of Vibration Engineering and Technologies, 2023, 11: 2133- 2153
doi: 10.1007/s42417-022-00692-9
|
11 |
YAN X, LIN D, CHEN B, et al Study on the influence of three-body particles on the dynamic performance of braking system[J]. Tribology International, 2023, 189: 109013
doi: 10.1016/j.triboint.2023.109013
|
12 |
CANDEO S, LEONARDI M, GIALANELLA S, et al Influence of contact pressure and velocity on the brake behaviour and particulate matter emissions[J]. Wear, 2023, 514−515: 204579
doi: 10.1016/j.wear.2022.204579
|
13 |
MA X, PAN G, ZHANG P, et al Experimental evaluation of braking pad materials used for high-speed elevator[J]. Wear, 2021, 477: 203872
doi: 10.1016/j.wear.2021.203872
|
14 |
WAN Z, LIU X, WANG H, et al Research on the time-varying properties of brake friction (September 2018)[J]. IEEE Access, 2018, 6: 69742- 69749
doi: 10.1109/ACCESS.2018.2878776
|
15 |
WU A Z, SHI X, WENG L, et al Thermo-mechanical modeling and transient analysis of frictional braking of elevator safety gear[J]. Journal of Thermal Stresses, 2020, 43 (12): 1467- 1486
doi: 10.1080/01495739.2020.1820921
|
16 |
WANG H, LU C, XIE F, et al Analysis of emergency braking characteristics and prediction of fatigue life for elevator block brake based on thermal-structural coupling[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44: 441
doi: 10.1007/s40430-022-03744-z
|
17 |
BELLINI C, DI COCCO V, IACOVIELLO D, et al Temperature influence on brake pad friction coefficient modelisation[J]. Materials, 2024, 17 (1): 189
|
18 |
WANG D, YIN J, ZHU Z, et al Preparation of high friction brake shoe material and its tribological behaviors during emergency braking in ultra-deep coal mine hoist[J]. Wear, 2020, 458−459: 203391
doi: 10.1016/j.wear.2020.203391
|
19 |
RAO S V, VENKATARAMANA M, KUMAR A C S Friction and dry sliding wear properties of compact graphite iron at room temperature and 100 ℃[J]. Materials Today: Proceedings, 2021, 45: 3250- 3254
|
20 |
LIMMER F, BROOKS P C, GILKESON C, et al Tribo-oxidation of a brake friction couple under varying sliding conditions[J]. Tribology International, 2023, 185: 108536
doi: 10.1016/j.triboint.2023.108536
|
21 |
哈里斯, 克兹拉斯. 滚动轴承分析[M], 罗继伟, 马维, 等译. 北京: 机械工业出版社, 2009: 113−114.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|