Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 258-267    DOI: 10.3785/j.issn.1008-973X.2019.02.008
机械工程     
盖封密封磨损-热-应力耦合模拟与优化设计
曹文翰1(),龚俊1,*(),王宏刚2,高贵1,2,祁渊1,杨东亚1
1. 兰州理工大学 机电工程学院,甘肃 兰州 730050
2. 中国科学院 兰州化学物理研究所 固体润滑国家重点实验室,甘肃 兰州 730000
Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design
Wen-han CAO1(),Jun GONG1,*(),Hong-gang WANG2,Gui GAO1,2,Yuan QI1,Dong-ya YANG1
1. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(1716 KB)   HTML
摘要:

在无油润滑工况下,密封面磨损是导致密封件性能降低及寿命丧失的关键因素. 结合有限元技术,基于修正的Archard磨损模型,建立盖封(CL)密封过程中密封件和活塞杆间的磨损-热-应力耦合数值模拟方法,分析磨损过程中密封件性能与寿命的变化规律及介质压力对密封特性的影响;基于所建立的仿真模型,采用正交试验设计法,以密封件密封面上最大接触压力降幅最小及密封件寿命最长作为优化目标,对CL密封中C形密封圈关键结构参数进行优化设计,得到最优组合方案;利用斯特林发动机活塞杆密封性能试验平台对数值模拟方法进行验证,并对磨损后CL密封接触面磨损状况进行测量,检测结果与仿真模拟结果较为一致,优化后密封件密封性能及使用寿命得到了提高.

关键词: 盖封(CL)密封有限元法应力磨损耦合结构优化    
Abstract:

The wear of the sealing surface is the key factor resulting in the declination of sealing performance and the loss of seal-life under the condition of oil free lubrication. A numerical simulation method of wear-thermal-stress coupling between seal and piston rod in the process of cap-seal (CL) sealing was established based on the finite element technique and the modified Archard wear model, and the change rule of seal performance and life in the process of wear and the effect of medium pressure on sealing characteristics were analyzed. The key structure parameters of C-ring in CL seal were optimized by applying the orthogonal design method based on the established simulation model, in order to realize the optimization target of getting minimum drop of maximum contact pressure in seal face and maximum seal-life, and the best parameter combination scheme was obtained. The results of numerical simulation and optimization design were verified by the experimental platform of Stirling engine piston rod seal performance test device, and the wear condition of contact surface of CL seal after wear was measured. The result of wear test was consistent with that of numerical simulation, and the sealing performance and life of the CL seal have been greatly improved after optimization, which confirms the accuracy of the numerical simulation method.

Key words: cap-seal (CL) seal    finite element method    thermal    stress    wear    coupling    structure optimization
收稿日期: 2018-04-03 出版日期: 2019-02-21
CLC:  TH 137  
通讯作者: 龚俊     E-mail: cwh_wd@163.com;gongjjdxy@sohu.com
作者简介: 曹文翰(1990—),男,博士生,从事斯特林发动机密封技术研究. orcid.org/0000-0003-4824-7339. E-mail: cwh_wd@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹文翰
龚俊
王宏刚
高贵
祁渊
杨东亚

引用本文:

曹文翰,龚俊,王宏刚,高贵,祁渊,杨东亚. 盖封密封磨损-热-应力耦合模拟与优化设计[J]. 浙江大学学报(工学版), 2019, 53(2): 258-267.

Wen-han CAO,Jun GONG,Hong-gang WANG,Gui GAO,Yuan QI,Dong-ya YANG. Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 258-267.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.008        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/258

图 1  CL密封几何模型及关键结构参数
图 2  CL密封有限元模型
图 3  3种工况下的CL密封Von Mises应力云图
图 4  3种工况下的CL密封接触应力云图
图 5  不同介质压力下C形密封圈接触应力分布图
图 6  磨损运行过程中CL密封Von Mises应力演变云图
图 7  磨损运行过程中C形密封圈接触应力分布曲线
图 8  磨损运行过程中C形密封圈节点温度变化曲线
图 9  磨损运行过程中C形密封圈磨痕曲线
图 10  磨损运行过程中不同介质压力下C形密封圈最大接触应力曲线
N A/mm β/(°) B/mm α/(°)
1 1.6 4 1.6 8
2 1.7 2 1.7 4
3 1.8 0 1.8 0
4 1.9 ?2 1.9 ?4
5 2.0 ?4 2.0 ?8
表 1  正交试验各因素水平表
图 11  C形密封圈结构参数正交试验结果
图 12  C形密封圈结构参数极差分析结果
结构参数 A/mm β/(°) B/mm α/(°)
优化前 1.8 0 1.8 0
优化后 1.6 ?4 1.9 ?8
表 2  C形密封圈优化前后各结构参数对比
图 13  优化设计后的C形密封圈结构轮廓
图 14  优化前后C形密封圈密封性能对比图
图 15  CL密封各组件实物图
图 16  活塞杆CL密封性能试验台原理图
图 17  密封腔内介质压力随时间变化曲线
图 18  优化前后C形密封圈磨痕对比
1 金东寒. 斯特林发动机技术[M]. 黑龙江:哈尔滨工程大学出版社, 2009.
2 谭晶, 杨卫民, 丁玉梅, 等 滑环式组合密封件的研究(Ⅰ): 方形同轴密封件(格来圈)的分析[J]. 润滑与密封, 2007, 32 (1): 53- 55
TAN Jing, YANG Wei-min, DING Yu-mei, et al The study of a sliding ring combined sealing(Ⅰ): the analysis of rectangle co-axial seal[J]. Lubrication Engineering, 2007, 32 (1): 53- 55
3 LARSEN T, ROEPSTORFF S, JORDAN H. New PTFE-based material for hydraulic seal applications [C] // 13th Scandinavian International Conference on Fluid Power. Link?ping: Link?ping University Electronic Press, 2013(92): 65–70.
4 MAO J, WANG W, LIU Y Experimental and theoretical investigation on the sealing performance of the combined seals for reciprocating rod[J]. Journal of Mechanical Science and Technology, 2012, 26 (6): 1765- 1772
5 张教超, 王敏庆, 李海飞 齿形滑环式组合密封的有限元分析[J]. 润滑与密封, 2011, 36 (5): 59- 62
ZHANG Jiao-chao, WANG Min-qing, LI Hai-fei The finite element analysis of tooth and sliding ring combined seal[J]. Lubrication Engineering, 2011, 36 (5): 59- 62
6 HUANG Y, SALANT R F Simulation of the effects of a plunge ground rod on hydraulic rod seal behavior[J]. Tribology Transactions, 2013, 56 (6): 986- 996
7 欧阳小平, 薛志全, 彭超, 等 航空作动器的VL密封特性分析[J]. 浙江大学学报: 工学版, 2015, 49 (9): 1755- 1761
OUYANG Xiao-ping, XUE Zhi-quan, PENG Chao, et al Performance analysis on VL seal in aircraft cylinder[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (9): 1755- 1761
8 欧阳小平, 刘玉龙, 薛志全, 等 航空作动器O形密封材料失效分析[J]. 浙江大学学报:工学版, 2017, 51 (7): 1361- 1367
OUYANG Xiao-ping, LIU Yu-long, XUE Zhi-quan, et al Analysis of material fault of O-ring seal in aircraft cylinder[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1361- 1367
9 WANG Z, DRAPER D, HODAPP T. Radial lip seal simulation using ansys non-standard procedures [C] // International ANSYS Conference. Pittsburgh: Anasys Advantage, 2006: 1–12.
10 BéKéSI N, VáRADI K Wear simulation of a reciprocating seal by global remeshing[J]. Periodica Polytechnica Engineering Mechanical Engineering, 2010, 54 (2): 71
11 BéKéSI N, VáRADI K, FELH?S D Wear simulation of a reciprocating seal[J]. Journal of Tribology, 2011, 133 (3): 031601
12 XIN L, GAO L P, ZHE L Prediction of seal wear with thermal-structural coupled finite element method[J]. Finite Elements in Analysis and Design, 2014, 83 (3): 10- 21
13 FR?LICH D, MAGYAR B, SAUER B A comprehensive model of wear, friction and contact temperature in radial shaft seals[J]. Wear, 2014, 311 (1/2): 71- 80
14 杨世铭,陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006.
15 尹延国, 邢大淼, 尤涛, 等 基于有限元法的面接触摩擦热流分配系数反推研究[J]. 摩擦学学报, 2012, 32 (6): 592- 598
YIN Yan-guo, XING Da-miao, YOU Tao, et al Inverse research on partition coefficient of heat flow under the condition of surface contact friction based on the finite element method[J]. Tribology, 2012, 32 (6): 592- 598
16 杨秀萍, 郭津津 单螺杆泵定子橡胶温度场分析[J]. 润滑与密封, 2008, 33 (7): 53- 55
YANG Xiu-ping, GUO Jin-jin Study of temperature field for stator rubber of eccentric screw pump[J]. Lubrication Engineering, 2008, 33 (7): 53- 55
17 何健, 李小红, 张治军 聚合物基复合材料摩擦学改性研究新进展[J]. 摩擦学学报, 2012, 32 (2): 199- 208
HE Jian, LI Xiao-hong, ZHANG Zhi-jun Research advances in tribological modification of polymer-based composites[J]. Tribology, 2012, 32 (2): 199- 208
18 莫丽, 王军 O形圈动密封特性的有限元分析[J]. 机械科学与技术, 2015, 34 (3): 386- 392
MO Li, WANG Jun Finite element analysis of the dynamic sealing characteristics for O-ring[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34 (3): 386- 392
19 TRELOAR L R G. The physics of rubber elasticity [M]. Oxford: Oxford University Press, 1975.
20 陈国定, HAISER H, HAAS W, 等 O形密封圈的有限元力学分析[J]. 机械科学与技术, 2000, 19 (5): 740- 741
CHEN Guo-ding, HAISER H, HAAS W, et al Analysis of O-ring seals using the finite element method[J]. Mechanical Science and Technology, 2000, 19 (5): 740- 741
21 SAWYER W G, FREUDENBERG K D, BHIMARAJ P, et al A study on the friction and wear behavior of PTFE filled with alumina nanoparticles[J]. Wear, 2003, 254 (5/6): 573- 580
22 ARCHARD J F Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24 (8): 981- 988
23 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
24 曹文翰, 龚俊, 杨东亚, 等 纳米Al2O3/聚苯硫醚改性聚四氟乙烯复合材料摩擦特性 [J]. 高分子材料科学与工程, 2017, 33 (5): 78- 84
CAO Wen-han, GONG Jun, YANG Dong-ya, et al Tribological behavior of nano-Al2O3/PPS reinforced PTFE composites [J]. Polymer Materials Science and Engineering, 2017, 33 (5): 78- 84
25 杨东亚. 斯特林发动机活塞杆Leningrader密封性能相关问题研究[D]. 兰州: 兰州理工大学, 2013.
YANG Dong-ya. Research on the Leningrader seal of piston-rod in Stirling engine [D]. Lanzhou: Lanzhou University of Technology, 2013.
[1] 蒋君侠,掌新辕,陶邦明,董群. 基于被动柔顺机理的电机遥操作更换机构设计和实验[J]. 浙江大学学报(工学版), 2021, 55(5): 855-865.
[2] 程训,余建波. 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报(工学版), 2021, 55(5): 896-904.
[3] 杨华美,李靖,堵锡华. 木质素单体模化物的热解与产物分析[J]. 浙江大学学报(工学版), 2021, 55(5): 976-983.
[4] 邱云龙,胡文杰,吴昌聚,陈伟芳. 嵌入式微通道传热特性及局部热点尺度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 665-674.
[5] 胡鹏,邓芍怡,赵自雄,曹志先,刘怀汉,贺治国. 基于水沙床耦合的滩槽冲淤模拟与疏浚量计算[J]. 浙江大学学报(工学版), 2021, 55(4): 733-741.
[6] 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应[J]. 浙江大学学报(工学版), 2021, 55(3): 500-510.
[7] 聂立,蔡润夏,鲁佳易,程伟,张文杰,巩李明,薛大勇,张缦,杨海瑞,吕俊复. 循环流化床外置换热器壁温偏差改进措施[J]. 浙江大学学报(工学版), 2021, 55(3): 578-585.
[8] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[9] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[10] 周剑,马刚,周伟,程勇刚,黄泉水,曹学兴. 基于FDEM的岩石颗粒破碎后碎片形状的统计分析[J]. 浙江大学学报(工学版), 2021, 55(2): 348-357.
[11] 杨楚航,贾绍辉,马晔城,朱经纬,刘涌,韩高荣. 全氧燃烧高铝玻璃熔窑三维数值工程仿真[J]. 浙江大学学报(工学版), 2021, 55(2): 410-418.
[12] 李中南,朱海波,赵阳,罗雪,徐荣桥. 装配式桥墩温度应力分析与裂纹控制[J]. 浙江大学学报(工学版), 2021, 55(1): 46-54.
[13] 张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.
[14] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[15] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.