Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1715-1726    DOI: 10.3785/j.issn.1008-973X.2020.09.007
土木与交通工程     
砂层盾构隧道泥水劈裂试验与数值研究
刘晶晶1(),陈铁林1,*(),姚茂宏1,魏钰昕2,周子健1
1. 北京交通大学 城市地下工程教育部重点实验室,北京 100044
2. 北京城市快轨建设管理有限公司,北京 100027
Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum
Jing-jing LIU1(),Tie-lin CHEN1,*(),Mao-hong YAO1,Yu-xin WEI2,Zi-jian ZHOU1
1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
2. Beijing Urban Rapid Transit Development Co. Ltd, Beijing 100027, China
 全文: PDF(1876 KB)   HTML
摘要:

开展砂层盾构隧道泥水劈裂平面模型试验,研究不同覆土厚度条件下的泥水劈裂破坏机制、土体表面竖向位移和土体内部土压力变化规律. 结果显示,劈裂机制为加压泥浆向掘削空间表面砂层渗透形成致密砂层及其表面泥膜(泥膜-砂层结构),泥膜-砂层结构在泥浆挤压作用下发生拉剪破坏. 劈裂压力随覆土厚度的增加呈近似线性增大. 劈裂扩展从刀盘顶部起始分别呈“斜直线”或“先竖直后斜线”型向上扩展. 基于自主开发的模拟泥水劈裂的有限元计算程序,参照模型试验建立二维数值模型,计算获得与模型试验较一致的劈裂扩展形态以及土体内部竖向位移与水平位移的变化规律. 结果表明,土体竖直向位移主要分布在刀盘上方以劈裂面为边界的“三角形”区域内,土体水平位移主要分布在掘削面土层.

关键词: 砂层泥水盾构泥水劈裂泥膜模型试验法有限元法(FEM)    
Abstract:

A series of 2D model tests on slurry fracturing of shield tunnels in the sandy stratum with different cover depths were conducted to investigate the slurry fracturing mechanism, the displacements of the ground surface, and the earth pressure distribution in the stratum. According to the test results, the slurry fracturing mechanism is that the dense sandy stratum and the filter cake on its surface (the filter cake-sandy stratum) is formed due to the pressurized slurry penetrating into the sandy stratum around excavation space, and then the filter cake-sandy stratum is pushed by the slurry to tensile and shear failure. The fracture pressure increases linearly with the increase of the cover depth. The fracture initiates on the top edge of the cutter head and propagates up to the ground surface in acclivitous direction directly, or first in straight and then in acclivitous direction. Based on a self-developed finite element program for simulating slurry fracturing, the 2D numerical models were established referring to the model tests, the numerical results including the morphology of the fracture propagation which agreed with the test results, and the vertical and horizontal displacements in the stratum were obtained. The numerical results show that the vertical displacement mainly distributes in a triangle region bounded by the fracture surface above the cutter head, while the horizontal displacement mainly distributes in the excavation face.

Key words: sandy stratum    slurry shield    slurry fracturing    filter cake    model test method    finite element method (FEM)
收稿日期: 2020-01-17 出版日期: 2020-09-22
CLC:  U 45  
基金资助: 国家重点研发计划资助项目(2017YFC0805400)
通讯作者: 陈铁林     E-mail: 13115305@bjtu.edu.cn;tlchen1@bjtu.edu.cn
作者简介: 刘晶晶(1987—),女,博士生,从事岩土工程的稳定性分析研究. orcid.org/0000-0002-6137-8272. E-mail: 13115305@bjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘晶晶
陈铁林
姚茂宏
魏钰昕
周子健

引用本文:

刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.

Jing-jing LIU,Tie-lin CHEN,Mao-hong YAO,Yu-xin WEI,Zi-jian ZHOU. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1715-1726.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.007        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1715

图 1  盾构隧道泥水劈裂模型试验装置示意图
图 2  盾构隧道泥水劈裂模型试验装置
图 3  盾构机模型和刀盘开孔
C/cm p1 / kPa p2 / kPa p3 / kPa
4.5 120 82 186
9.0 142 219 149
18.0 450 417 344
27.0 501 426 248
表 1  不同覆土厚度条件下泥水劈裂压力试验值
图 4  不同覆土厚度条件下的泥水劈裂形态
图 5  砂层盾构隧道泥水劈裂过程图
图 6  掘削面处的泥膜及劈裂形态
图 7  覆土厚度较小(C=0.5 D、1.0 D)时盾构机模型上方土层中的泥水劈裂形态俯视图
图 8  覆土厚度较大(C=2.0 D、3.0 D)时盾构机模型上方土层中泥水劈裂形态俯视图
图 9  劈裂扩展方向力学分析
图 10  土体表面隆起位移随时间变化
图 11  不同覆土厚度条件劈裂贯通时刻土体表面隆起量
图 12  泥水劈裂过程中土压力变化值曲线
图 13  泥水劈裂扩展至#3土压力传感器的照片
材料 ρ / (kg·m?3) e Sr k / (m·s?1) 邓肯-张模型参数
K Kur n c/kPa $\phi $ Rf Kb m
砂土 1 560 0.80 0.20 1×10?10 276 552 0.57 1 31.88 0.87 50 0.2
泥膜-砂层结构 2 000 0.50 1.00 1×10?20 500 1 000 0.60 500 30.00 0.90 100 0.3
表 2  数值模拟材料参数
图 14  砂层盾构隧道泥水劈裂数值模型示意图
图 15  不同覆土厚度条件泥水劈裂形态数值结果
图 16  不同覆土厚度条件下泥水劈裂压力试验值与模拟值分布
图 17  不同覆土厚度条件下泥水劈裂贯通至土体表面时刻水平位移数值计算结果
图 18  不同覆土厚度条件下泥水劈裂贯通至土体表面时刻竖向位移数值计算结果
1 朱金才, 卢珂, 杨进超, 等 砂土地层中隧道失稳机理验证[J]. 地下空间与工程学报, 2015, 11 (5): 1175- 1179
ZHU Jin-cai, LU Ke, YANG Jin-cao, et al Verification of the failure mechanism of tunnel in sandy soil[J]. Chinese Journal of Underground Space and Engineering, 2015, 11 (5): 1175- 1179
2 朱永全, 宋玉香. 隧道工程: 第2版[M]. 北京: 中国铁道出版社, 2007: 30.
3 王梦恕 中国盾构和掘进机隧道技术现状、存在的问题及发展思路[J]. 隧道建设, 2014, 34 (3): 179- 187
WANG Meng-shu Tunneling by TBM/shield in China: state-of-art, problems and proposals[J]. Tunnel Construction, 2014, 34 (3): 179- 187
doi: 10.3973/j.issn.1672-741X.2014.03.001
4 闵凡路, 宋航标, 柏煜新, 等 泥水盾构隧道开挖面被动破坏研究进展[J]. 隧道建设, 2018, 38 (4): 575- 581
MIN Fan-lu, SONG Hang-biao, BAI Yu-xin, et al Research progress of passive failure of excavation face during slurry shield tunneling[J]. Tunnel Construction, 2018, 38 (4): 575- 581
doi: 10.3973/j.issn.2096-4498.2018.04.007
5 LV X L, ZHOU Y C, HUANG M S, et al Experimental study of the face stability of shield tunnel in sands under seepage condition[J]. Tunnelling and Underground Space Technology, 2018, 74: 195- 205
doi: 10.1016/j.tust.2018.01.015
6 WONG K S, Ng C W W, Chen Y M, et al Centrifuge and numerical investigation of passive failure of tunnel face in sand[J]. Tunnelling and Underground Space Technology, 2012, 28: 297- 303
doi: 10.1016/j.tust.2011.12.004
7 李昀. 软土中超大直径泥水平衡盾构开挖面稳定性研究[D]. 上海: 同济大学, 2008: 53.
LI Yun. Stability analysis of large slurry shield-driven tunnel in soft clay [D]. Shanghai: Tongji University, 2008: 53.
8 袁大军, 黄清飞, 小泉淳, 等 水底盾构掘进泥水喷发现象研究[J]. 岩石力学与工程学报, 2007, 26 (11): 2296- 2301
YUAN Da-jun, HUANG Qing-fei, XIAO Quan-chun, et al Study on slurry-water gushing during underwater shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (11): 2296- 2301
doi: 10.3321/j.issn:1000-6915.2007.11.016
9 LIU X Y, YUAN D J An in-situ slurry fracturing test for slurry shield tunneling[J]. Journal of Zhejiang University-SCIENCE A: Applied Physics and Engineering, 2014, 15 (7): 465- 481
10 ADACHI J, SIEBRITS E, PEIRCE A, et al Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44 (5): 739- 757
doi: 10.1016/j.ijrmms.2006.11.006
11 KUMAR S, ZIELONKA M, SEARLES K, et al Modeling of hydraulic fracturing in ultra-low permeability formations: the role of pore fluid cavitation[J]. Engineering Fracture Mechanics, 2017, 184: 227- 240
doi: 10.1016/j.engfracmech.2017.08.020
12 CHEN T L, PANG T Z, ZHAO Y, et al Numerical simulation of slurry fracturing during shield tunnelling[J]. Tunnelling and Underground Space Technology, 2018, 74: 153- 166
doi: 10.1016/j.tust.2018.01.021
13 MIN F L, ZHU W, HAN X R Filter cake formation for slurry shield tunneling in highly permeable sand[J]. Tunnelling and Underground Space Technology, 2013, 38: 423- 430
doi: 10.1016/j.tust.2013.07.024
14 尹鑫晟. 泥水盾构成膜规律及开挖面稳定性[D]. 杭州: 浙江大学, 2017: 27.
YIN Xin-sheng. Cake filtration and face stabilitv of slurry shield tunnel[D]. Zhejiang: Zhejiang University, 2017: 27.
15 XU T, BEZUIJEN A. Bentonite slurry infiltration into sand: filter cake formation under various conditions[J]. Geotechnique. 2019, 69(12): 1095-1106.
16 CUI W, LIU D, SONG H F, et al Development and experimental study on environmental slurry for slurry shield tunneling[J]. Construction and Building Materials, 2019, 216: 416- 423
doi: 10.1016/j.conbuildmat.2019.04.265
17 阮文军, 王文臣, 胡安兵 新型水泥复合浆液的研制及其应用[J]. 岩土工程学报, 2001, 23 (2): 212- 216
RUAN Wen-jun, WANG Wen-chen, HU An-bing Development and application of new kind of cement composite grout[J]. Chinese Journal of Geotechnical Engineering, 2001, 23 (2): 212- 216
doi: 10.3321/j.issn:1000-4548.2001.02.018
18 闵凡路, 魏代伟, 姜腾, 等 泥浆在地层中的渗透特性试验研究[J]. 岩土力学, 2014, 35 (10): 2801- 2806
MIN Fan-lu, WEI Dai-wei, JIANG Teng, et al Experimental study of law of slurry infiltration in strata[J]. Rock and Soil Mechanics, 2014, 35 (10): 2801- 2806
19 陈仲颐, 周景星, 王洪瑾. 土力学[M]. 北京: 清华大学出版社, 1994: 164-165.
20 孙训方, 方孝淑, 关来泰. 材料力学: 第1册[M]. 北京: 高等教育出版社, 2009: 234.
21 屈智炯, 刘恩龙. 土的塑性力学[M]. 北京: 科学出版社, 2011: 182-183.
22 工程地质手册编委会. 工程地质手册: 第5版[M]. 北京: 中国建筑工业出版社, 2018: 176.
[1] 贾连辉,李太运. 超大直径盾构管片拼装机关键技术[J]. 浙江大学学报(工学版), 2020, 54(4): 816-823.
[2] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2015, 49(1): 173-180.
[3] 肖文生,崔俊国,刘健,吴晓东,黄红胜. 直驱采油用永磁同步电机削弱齿槽转矩优化[J]. 浙江大学学报(工学版), 2014, 48(8): 1-8.
[4] 张忠苗,房凯,刘兴旺,林存刚. 特殊双排结构围护基坑周围地面沉降控制[J]. J4, 2012, 46(7): 1275-1280.
[5] 王成立, 高慧, 卢建刚. 水轮发电机定子故障下的阻尼条损耗计算[J]. J4, 2012, 46(4): 770-776.
[6] 张忠苗 ,林存刚,吴世明,邹健,刘俊伟. 泥水盾构施工引起的地面固结沉降实例研究[J]. J4, 2012, 46(3): 431-440.
[7] 刘联鋆, 郝志勇, 钱欣怡. 空滤器滤芯声学特性的仿真方法[J]. J4, 2012, 46(10): 1784-1789.
[8] 钟志贤, 祝长生. 横向裂纹多盘柔性转子系统的动力学特性[J]. J4, 2012, 46(10): 1839-1845.