能源工程、环境工程 |
|
|
|
|
基于相变材料的蒸汽卡诺电池热力学循环设计 |
林小杰1,2( ),徐家豪1,2,孙鹏3,钟崴2,*( ),胡亚才2 |
1. 浙江大学 能源工程学院,浙江 杭州 310027 2. 浙江大学 嘉兴研究院,浙江 嘉兴 314024 3. 浙江大学 工程师学院,浙江 杭州 310015 |
|
Thermodynamic cycle design of steam Carnot battery based on phase change material |
Xiaojie LIN1,2( ),Jiahao XU1,2,Peng SUN3,Wei ZHONG2,*( ),Yacai HU2 |
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China 2. Jiaxing Research Institute, Zhejiang University, Jiaxing 314024, China 3. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China |
引用本文:
林小杰,徐家豪,孙鹏,钟崴,胡亚才. 基于相变材料的蒸汽卡诺电池热力学循环设计[J]. 浙江大学学报(工学版), 2024, 58(1): 161-168.
Xiaojie LIN,Jiahao XU,Peng SUN,Wei ZHONG,Yacai HU. Thermodynamic cycle design of steam Carnot battery based on phase change material. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 161-168.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.017
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I1/161
|
1 |
谢小荣, 马宁嘉, 刘威, 等 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43 (1): 158- 169 XIE Xiaorong, MA Ningjia, LIU Wei, et al Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43 (1): 158- 169
|
2 |
SAMEER H, JOHANNES L A review of large-scale electrical energy storage[J]. International Journal of Energy Research, 2015, 39 (9): 1179- 1195
doi: 10.1002/er.3294
|
3 |
ARMAN A, BREYER C Assessment of geological resource potential for compressed air energy storage in global electricity supply[J]. Energy Conversion and Management, 2018, 169 (1): 161- 173
|
4 |
OLIVIER D, FRATE G, PILLAI A, et al Carnot battery technology: a state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756
doi: 10.1016/j.est.2020.101756
|
5 |
李中浩, 余娟, 杨知方, 等. 精准计及大规模储能电池寿命的电力系统经济调度 [EB/OL]. [2023-03-01]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220902.1535.003.html. LI Zhonghao, YU Juan, YANG Zhifang, et al. Economic dispatch of power system accurately considering the life of large-scale energy storage battery [EB/OL]. [2023-03-01]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220902.1535.003.html.
|
6 |
ABDELRAHMAN H, DONOGHUE L, SANCHEZ C, et al Thermodynamic analysis of high-temperature pumped thermal energy storage systems: refrigerant selection, performance and limitations[J]. Energy Reports, 2020, 6 (7): 147- 159
|
7 |
张琼, 王亮, 徐玉杰, 等 热泵储电技术研究进展[J]. 中国电机工程学报, 2018, 38 (1): 178- 185 ZHANG Qiong, WANG Liang, XU Yujie, et al Research progress in pumped heat electricity storage system: a review[J]. Proceedings of the CSEE, 2018, 38 (1): 178- 185
doi: 10.13334/j.0258-8013.pcsee.162031
|
8 |
DESRUES T, RUER J, MARTY P, et al A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30 (5): 425- 432
doi: 10.1016/j.applthermaleng.2009.10.002
|
9 |
HOWES J Concept and development of a pumped heat electricity storage device[J]. Proceedings of the IEEE, 2012, 100 (2): 493- 503
doi: 10.1109/JPROC.2011.2174529
|
10 |
SMALLBONE A, JULCH V, WARDLE R, et al Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152 (15): 221- 228
|
11 |
杨鹤, 杜小泽 布雷顿循环热泵储能的性能分析与多目标优化[J]. 中国电机工程学报, 2022, 42 (1): 196- 211 YANG He, DU Xiaoze Performance analysis and multi-objective optimization of Brayton cycle pumped thermal energy storage[J]. Proceedings of the CSEE, 2022, 42 (1): 196- 211
|
12 |
MCTIGUE J D, WHITE A J, MARKIDES C N Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137 (1): 800- 811
|
13 |
KIM Y, SHIN D, LEE S, et al Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage [J]. Energy, 2013, 49 (1): 484- 501
|
14 |
WANG G, ZHANG X Thermodynamic analysis of a novel pumped thermal energy storage system utilizing ambient thermal energy and LNG cold energy[J]. Energy Conversion and Management, 2017, 148 (15): 1248- 1264
|
15 |
STEINMANN W D The CHEST (compressed heat energy storage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69 (1): 543- 552
|
16 |
陶志强, 赵庆, 唐豪杰, 等 应用于工业余热的超临界二氧化碳布雷顿循环系统的热力学和㶲分析[J]. 中国电机工程学报, 2019, 39 (23): 6944- 6951 TAO Zhiqiang, ZHAO Qing, TANG Haojie, et al Thermodynamic and exergetic analysis of supercritical carbon dioxide Brayton cycle system applied to industrial waste heat recovery[J]. Proceedings of the CSEE, 2019, 39 (23): 6944- 6951
doi: 10.13334/J.0258-8013.PCSEE.190204
|
17 |
NING X, HUANG Z, LUO Z, et al Inorganic salt hydrate for thermal energy storage[J]. Applied Sciences, 2017, 7 (12): 1317
doi: 10.3390/app7121317
|
18 |
STEPHAN H, KONIG-HAAGEN A, BRUGGEMANN D Thermophysical characterization of MgCl2· 6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES) [J]. Materials, 2017, 10 (4): 444
doi: 10.3390/ma10040444
|
19 |
COSTA S C, KENISARIN M A review of metallic materials for latent heat thermal energy storage: thermophysical properties, applications, and challenges[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111812
doi: 10.1016/j.rser.2021.111812
|
20 |
MATTEO M, MERCANGOZ M, HEMRLE J, et al Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles [J]. Energy, 2013, 58 (1): 571- 587
|
21 |
CARLOS R, PALACIO J, VENTURINI O, et al Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil[J]. Applied Thermal Engineering, 2013, 52 (1): 109- 119
doi: 10.1016/j.applthermaleng.2012.11.012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|