Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (1): 161-168    DOI: 10.3785/j.issn.1008-973X.2024.01.017
能源工程、环境工程     
基于相变材料的蒸汽卡诺电池热力学循环设计
林小杰1,2(),徐家豪1,2,孙鹏3,钟崴2,*(),胡亚才2
1. 浙江大学 能源工程学院,浙江 杭州 310027
2. 浙江大学 嘉兴研究院,浙江 嘉兴 314024
3. 浙江大学 工程师学院,浙江 杭州 310015
Thermodynamic cycle design of steam Carnot battery based on phase change material
Xiaojie LIN1,2(),Jiahao XU1,2,Peng SUN3,Wei ZHONG2,*(),Yacai HU2
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Jiaxing Research Institute, Zhejiang University, Jiaxing 314024, China
3. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
 全文: PDF(1691 KB)   HTML
摘要:

为了研究工业园区综合能源系统的多能互补新路线,提出基于高低温相变材料的新型蒸汽卡诺电池. 建立计及设备性能与质量流量的热力学循环计算模型,分析设计参数、多级压缩结构对系统热泵系数、循环效率、储电损失与供热?效率的影响. 通过探究发现,低温相变材料的相变温度和高温相变材料的相变温度是影响蒸汽卡诺电池性能的主要因素,得到蒸汽卡诺电池的高循环性能区. 优化蒸汽卡诺电池的参数与结构,结果表明,循环效率可达56.96%,热泵系数可达2.55,供热?效率可达68.74%.

关键词: 卡诺电池储能热力学分析蒸汽生产余热利用    
Abstract:

A new steam Carnot battery based on high-temperature and low-temperature phase change materials was proposed in order to analyze the new route of multi-energy complementation of integrated energy system in industrial parks. A thermodynamic cycle calculation model considering the equipment performance and mass flow rate was established. The effects of design parameters and multi-stage compression structure on the system heat pump coefficient, round-trip efficiency, power storage loss and efficiency of the heating were analyzed. The phase change temperature of low-temperature phase change material and the phase change temperature of high-temperature phase change material are the main factors affecting the performance of steam Carnot battery. The high cycle performance region of steam Carnot battery was obtained. The parameters and structure of the steam Carnot battery were optimized. Results showed that the round-trip efficiency could reach 56.96%, the coefficient of performance of the heat pump could reach 2.55, and the efficiency of the heating could reach 68.74%.

Key words: Carnot battery    energy storage    thermodynamic analysis    steam production    waste heat utilization
收稿日期: 2023-03-02 出版日期: 2023-11-07
CLC:  TK 219  
基金资助: 国家自然科学基金资助项目(51806190);国家重点研发计划资助项目(2019YFE0126000)
通讯作者: 钟崴     E-mail: xiaojie.lin@zju.edu.cn;zhongw@zju.edu.cn
作者简介: 林小杰(1992—),男,副研究员,从事综合能源的研究. orcid.org/0000-0002-0829-1143. E-mail: xiaojie.lin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林小杰
徐家豪
孙鹏
钟崴
胡亚才

引用本文:

林小杰,徐家豪,孙鹏,钟崴,胡亚才. 基于相变材料的蒸汽卡诺电池热力学循环设计[J]. 浙江大学学报(工学版), 2024, 58(1): 161-168.

Xiaojie LIN,Jiahao XU,Peng SUN,Wei ZHONG,Yacai HU. Thermodynamic cycle design of steam Carnot battery based on phase change material. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 161-168.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.017        https://www.zjujournals.com/eng/CN/Y2024/V58/I1/161

图 1  蒸汽卡诺电池的结构及充放电过程
图 2  蒸汽卡诺电池热力学循环的温-熵图
图 3  低温相变材料温度对蒸汽卡诺电池性能的影响
图 4  储电损失、蒸汽压缩机耗功与低温相变材料温度的关系
图 5  高温相变材料温度对蒸汽卡诺电池性能的影响
图 6  储电损失、蒸汽压缩机耗功与高温相变材料温度的关系
图 7  蒸汽压缩机绝热效率对蒸汽卡诺电池性能的影响
图 8  汽轮机绝热效率对蒸汽卡诺电池性能的影响
图 9  高、低温相变材料温度对蒸汽卡诺电池循环效率的共同影响
图 10  压缩级数与高温相变材料温度对蒸汽卡诺电池循环效率的影响
图 11  压缩级数与高温相变材料温度对蒸汽卡诺电池热泵系数的影响
图 12  压缩级数与高温相变材料温度对蒸汽卡诺电池供热㶲效率的影响
1 谢小荣, 马宁嘉, 刘威, 等 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43 (1): 158- 169
XIE Xiaorong, MA Ningjia, LIU Wei, et al Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43 (1): 158- 169
2 SAMEER H, JOHANNES L A review of large-scale electrical energy storage[J]. International Journal of Energy Research, 2015, 39 (9): 1179- 1195
doi: 10.1002/er.3294
3 ARMAN A, BREYER C Assessment of geological resource potential for compressed air energy storage in global electricity supply[J]. Energy Conversion and Management, 2018, 169 (1): 161- 173
4 OLIVIER D, FRATE G, PILLAI A, et al Carnot battery technology: a state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756
doi: 10.1016/j.est.2020.101756
5 李中浩, 余娟, 杨知方, 等. 精准计及大规模储能电池寿命的电力系统经济调度 [EB/OL]. [2023-03-01]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220902.1535.003.html.
LI Zhonghao, YU Juan, YANG Zhifang, et al. Economic dispatch of power system accurately considering the life of large-scale energy storage battery [EB/OL]. [2023-03-01]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220902.1535.003.html.
6 ABDELRAHMAN H, DONOGHUE L, SANCHEZ C, et al Thermodynamic analysis of high-temperature pumped thermal energy storage systems: refrigerant selection, performance and limitations[J]. Energy Reports, 2020, 6 (7): 147- 159
7 张琼, 王亮, 徐玉杰, 等 热泵储电技术研究进展[J]. 中国电机工程学报, 2018, 38 (1): 178- 185
ZHANG Qiong, WANG Liang, XU Yujie, et al Research progress in pumped heat electricity storage system: a review[J]. Proceedings of the CSEE, 2018, 38 (1): 178- 185
doi: 10.13334/j.0258-8013.pcsee.162031
8 DESRUES T, RUER J, MARTY P, et al A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30 (5): 425- 432
doi: 10.1016/j.applthermaleng.2009.10.002
9 HOWES J Concept and development of a pumped heat electricity storage device[J]. Proceedings of the IEEE, 2012, 100 (2): 493- 503
doi: 10.1109/JPROC.2011.2174529
10 SMALLBONE A, JULCH V, WARDLE R, et al Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152 (15): 221- 228
11 杨鹤, 杜小泽 布雷顿循环热泵储能的性能分析与多目标优化[J]. 中国电机工程学报, 2022, 42 (1): 196- 211
YANG He, DU Xiaoze Performance analysis and multi-objective optimization of Brayton cycle pumped thermal energy storage[J]. Proceedings of the CSEE, 2022, 42 (1): 196- 211
12 MCTIGUE J D, WHITE A J, MARKIDES C N Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137 (1): 800- 811
13 KIM Y, SHIN D, LEE S, et al Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage [J]. Energy, 2013, 49 (1): 484- 501
14 WANG G, ZHANG X Thermodynamic analysis of a novel pumped thermal energy storage system utilizing ambient thermal energy and LNG cold energy[J]. Energy Conversion and Management, 2017, 148 (15): 1248- 1264
15 STEINMANN W D The CHEST (compressed heat energy storage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69 (1): 543- 552
16 陶志强, 赵庆, 唐豪杰, 等 应用于工业余热的超临界二氧化碳布雷顿循环系统的热力学和㶲分析[J]. 中国电机工程学报, 2019, 39 (23): 6944- 6951
TAO Zhiqiang, ZHAO Qing, TANG Haojie, et al Thermodynamic and exergetic analysis of supercritical carbon dioxide Brayton cycle system applied to industrial waste heat recovery[J]. Proceedings of the CSEE, 2019, 39 (23): 6944- 6951
doi: 10.13334/J.0258-8013.PCSEE.190204
17 NING X, HUANG Z, LUO Z, et al Inorganic salt hydrate for thermal energy storage[J]. Applied Sciences, 2017, 7 (12): 1317
doi: 10.3390/app7121317
18 STEPHAN H, KONIG-HAAGEN A, BRUGGEMANN D Thermophysical characterization of MgCl2· 6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES) [J]. Materials, 2017, 10 (4): 444
doi: 10.3390/ma10040444
19 COSTA S C, KENISARIN M A review of metallic materials for latent heat thermal energy storage: thermophysical properties, applications, and challenges[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111812
doi: 10.1016/j.rser.2021.111812
20 MATTEO M, MERCANGOZ M, HEMRLE J, et al Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles [J]. Energy, 2013, 58 (1): 571- 587
21 CARLOS R, PALACIO J, VENTURINI O, et al Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil[J]. Applied Thermal Engineering, 2013, 52 (1): 109- 119
doi: 10.1016/j.applthermaleng.2012.11.012
[1] 赵影,王达,倪佳华,凌永辉,项基,郑婷婷. 控制同步发电机加速功率的储能滑模控制器[J]. 浙江大学学报(工学版), 2023, 57(5): 1050-1060.
[2] 孟庆龙,任效效,王文强,李洋,熊成燕. 考虑主动储能的HVAC需求响应策略实验与模拟[J]. 浙江大学学报(工学版), 2021, 55(6): 1175-1184.
[3] 黄凯,孙志坚,钱文瑛,杨继虎,俞自涛,胡亚才. 中间介质型烟气换热器无量纲材料成本模型[J]. 浙江大学学报(工学版), 2020, 54(7): 1362-1368.
[4] 从硕,陈佳明,蔡景成,孙瑞松,董建华,郭飞. 加湿除湿脱盐系统的热力学分析及实验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 684-691.
[5] 刘长铖, 李文辉, 张文平, 夏文, 张子鉴, 周耀锋. 大型船用柴油机余热利用系统性能研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2259-2264.
[6] 姜季宏, 刘鸿鹏, 江振洲, 王卫. 储能电梯中超级电容选取和控制策略[J]. J4, 2014, 48(4): 610-615.
[7] 肖玉麒, 甘曦梓, 曾轶, 范利武, 洪荣华, 俞自涛, 胡亚才. 碳纳米管填料对相变储能式热沉性能的影响[J]. 浙江大学学报(工学版), 2014, 48(10): 1732-1738.
[8] 肖玉麒,范利武,洪荣华,徐旭,俞自涛,胡亚才. 纳米填料对储能式散热器性能影响的数值研究[J]. J4, 2013, 47(9): 1644-1649.
[9] 严建华 祝红梅 蒋旭光 池涌 岑可法. 医疗废物焚烧中Cd/Cu/Pb/Zn的分布研究[J]. J4, 2008, 42(10): 1812-1816.