流体力学 |
|
|
|
|
光滑点插值法应用于流固耦合的比较研究 |
黄硕1(),王双强1,王鹏1,张桂勇1,2,3,*() |
1. 大连理工大学 船舶工程学院 辽宁省深海浮动结构工程实验室,辽宁 大连 116024 2. 大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024 3. 高新船舶与深海开发装备协同创新中心,上海 200240 |
|
Comparative study of application of smoothed point interpolation method in fluid-structure interactions |
Shuo HUANG1(),Shuang-qiang WANG1,Peng WANG1,Gui-yong ZHANG1,2,3,*() |
1. Liaoning Engineering Laboratory for Deep-Sea Floating Structures, School of Naval Architecture, Dalian University of Technology, Dalian 116024, China 2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China 3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China |
引用本文:
黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.
Shuo HUANG,Shuang-qiang WANG,Peng WANG,Gui-yong ZHANG. Comparative study of application of smoothed point interpolation method in fluid-structure interactions. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1645-1654.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.025
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1645
|
1 |
PESKIN C S Flow patterns around heart valves: a numerical method[J]. Journal of Computational Physics, 1972, 10 (2): 252- 271
doi: 10.1016/0021-9991(72)90065-4
|
2 |
罗海宁, 黄伟希 移动最小二乘浸没边界法中的权函数影响分析[J]. 计算力学学报, 2017, 34 (4): 487- 492 LUO Hai-ning, HUANG Wei-xi The impact analysis of weight finction in immersed boundary methods by the moving least square[J]. Chinese Journal of Computational Mechanics, 2017, 34 (4): 487- 492
doi: 10.7511/jslx201704014
|
3 |
何跃龙, 李盾, 刘帅, 等 基于指数插值的浸没边界法在可压缩流模拟中的应用研究[J]. 空气动力学学报, 2016, 34 (4): 426- 432 HE Yue-long, LI Dun, LIU Shuai, et al The application of power-law interpolation based immersed boundary method in compressible flow simulation[J]. Acta Aerodynamica Sinica, 2016, 34 (4): 426- 432
doi: 10.7638/kqdlxxb-2014.0107
|
4 |
GLOWINSKI R, PANT W, HESLA T I, et al A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow[J]. International Journal for Numerical Methods in Fluids, 1999, 30 (8): 1043- 1066
doi: 10.1002/(SICI)1097-0363(19990830)30:8<1043::AID-FLD879>3.0.CO;2-Y
|
5 |
WANG T, PANT W, GLOWINSKI R, et al A fictitious domain method for simulating viscous flow in a constricted elastic tube subject to a uniform external pressure[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26 (3/4): 290- 304
|
6 |
陈凯, 余钊圣, 邵雪明 多孔介质方腔自然对流的直接数值模拟[J]. 浙江大学学报: 工学版, 2012, 46 (3): 549- 554 CHEN Kai, YU Zhao-sheng, SHAO Xue-ming Direct simulation of natural convection in square cavity filled with porus media[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (3): 549- 554
|
7 |
林昭武. 基于并行虚拟区域方法的颗粒悬浮流直接数值模拟研究[D]. 杭州: 浙江大学, 2016. LIN Zhao-wu. Direct numercial simulation of particulate flows with the parallel fictitious domain method [D]. Hagnzhou: Zhejiang University, 2016.
|
8 |
ZHANG L T, GERSTENBERGER A, WANG X, et al Immersed finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193 (21/22): 2051- 2067
|
9 |
LIU W K, KIM D W, TANG S Mathematical foundations of the immersed finite element method[J]. Computational Mechanics, 2007, 39 (3): 211- 222
|
10 |
吴家阳, 熊智勇, 杨峰, 等 浸没边界-格子玻尔兹曼方法的GPU并行加速[J]. 中国科技论文, 2018, 13 (5): 517- 521 WU Jia-yang, XIONG Zhi-yong, YANG Feng, et al GPU accelerated immersed boundary-lattice Boltzmann coupling method[J]. China Sciencepaper, 2018, 13 (5): 517- 521
doi: 10.3969/j.issn.2095-2783.2018.05.006
|
11 |
刘克同, 汤爱平, 刘玥君, 等 基于浸没边界和格子玻尔兹曼的流固耦合算法[J]. 华中科技大学学报: 自然科学版, 2015, 43 (1): 61- 66 LIU Ke-tong, TANG Ai-ping, LIU Yue-jun, et al Fluid-structure interaction method using immersed boundary and lattice Boltzmann method[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (1): 61- 66
|
12 |
GILMANOV A, SOTIROPOULOS F A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies[J]. Journal of Computational Physics, 2005, 207 (2): 457- 492
doi: 10.1016/j.jcp.2005.01.020
|
13 |
ZHANG G Y, LU H, YU D P, et al A node-based partly smoothed point interpolation method (NPS-PIM) for dynamic analysis of solids[J]. Engineering Analysis with Boundary Elements, 2018, 87: 165- 172
doi: 10.1016/j.enganabound.2017.12.002
|
14 |
HOU G, WANG J, LAYTON A Numerical methods for fluid-structure interaction: a review[J]. Communications in Computational Physics, 2012, 12 (2): 337- 377
doi: 10.4208/cicp.291210.290411s
|
15 |
ZHANG Z Q, LIU G R, KHOO B C Immersed smoothed finite element method for two dimensional fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering, 2012, 90 (10): 1292- 1320
doi: 10.1002/nme.4299
|
16 |
JIANG C, YAO J Y, ZHANG Z Q, et al A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 340 (1): 24- 53
|
17 |
WANG S Q, ZHANG G Y, ZHANG Z Q, et al An immersed smoothed point interpolation method (IS-PIM) for fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids, 2017, 85 (4): 213- 234
doi: 10.1002/fld.4379
|
18 |
WANG S Q, CAI Y N, ZHANG G Y, et al A coupled immersed boundary-lattice Boltzmann method with smoothed point interpolation method for fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids, 2018, 88 (8): 363- 384
doi: 10.1002/fld.4669
|
19 |
ZHANG G Y, WANG S Q, LU H, et al Coupling immersed method with node-based partly smoothed point interpolation method (NPS-PIM) for large-displacement fluid-structure interaction problems[J]. Ocean Engineering, 2018, 157: 80- 201
|
20 |
LIU G R, ZHANG G Y. Smoothed point interpolation methods: G space and weakened weak forms [M]. Singapore: World Scientific Press, 2013.
|
21 |
LIU G R, ZHANG G Y Edge-based smoothed point interpolation methods[J]. International Journal of Computational Methods, 2008, 5 (4): 621- 646
doi: 10.1142/S0219876208001662
|
22 |
ZHANG G Y, LIU G R, WANG Y Y, et al A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems[J]. International Journal for Numerical Methods in Engineering, 2010, 72 (13): 1524- 1543
|
23 |
LIU G R, ZHANG G Y Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM)[J]. International Journal for Numerical Methods in Engineering, 2008, 74 (7): 1128- 1161
doi: 10.1002/nme.2204
|
24 |
鲁欢, 于大鹏, 张桂勇, 等 应用点基局部光滑点插值法的固有频率上下界计算[J]. 西安交通大学学报, 2017, 51 (5): 165- 172 LU Huan, YU Da-peng, ZHANG Gui-yong, et al Node-locally-based smoothed point interpolation method for calculating upper/lower bounds of natural frequency[J]. Journal of Xi’an Jiaotong University, 2017, 51 (5): 165- 172
|
25 |
张桂勇, 鲁欢, 王海英, 等 基于点基局部光滑点插值法的结构动力分析[J]. 振动与冲击, 2018, 37 (17): 241- 248 ZHANG Gui-yong, LU Huan, WANG Hai-ying, et al Structual dynamics analysis using NPSPIM[J]. Journal of Vibration and Shock, 2018, 37 (17): 241- 248
|
26 |
ZIENKIEWICZ O C, NITHIARASU P, CODINA R, et al The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems[J]. International Journal for Numerical Methods in Fluids, 1999, 31 (1): 359- 392
doi: 10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
|
27 |
ZIENKIEWICZ O C, TAYLOR R L. The finite element method, 5th edition [M]. Oxford: Butterworth Heinemann, 2000.
|
28 |
BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. New York: John Wiley, 2000.
|
29 |
CLIFT R. Bubbles, drops, and particles [M]. New York: Academic Press, 1978.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|