Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (8): 1645-1654    DOI: 10.3785/j.issn.1008-973X.2020.08.025
流体力学     
光滑点插值法应用于流固耦合的比较研究
黄硕1(),王双强1,王鹏1,张桂勇1,2,3,*()
1. 大连理工大学 船舶工程学院 辽宁省深海浮动结构工程实验室,辽宁 大连 116024
2. 大连理工大学 工业装备结构分析国家重点实验室,辽宁 大连 116024
3. 高新船舶与深海开发装备协同创新中心,上海 200240
Comparative study of application of smoothed point interpolation method in fluid-structure interactions
Shuo HUANG1(),Shuang-qiang WANG1,Peng WANG1,Gui-yong ZHANG1,2,3,*()
1. Liaoning Engineering Laboratory for Deep-Sea Floating Structures, School of Naval Architecture, Dalian University of Technology, Dalian 116024, China
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
 全文: PDF(1709 KB)   HTML
摘要:

针对传统有限元法(FEM)固体模型刚度过硬导致低阶单元求解精度较低的问题,采用光滑点插值方法(S-PIM). S-PIM得益于梯度光滑技术能软化固体模型刚度,基于容易剖分的线性背景网格能改善固体求解精度. 采用不同的光滑域构建方式可以得到不同的固体求解器,从而在不同程度上提高计算精度. 本研究以浸没光滑点插值法(IS-PIM)为基础,在流固耦合(FSI)模型中采用较成熟的半隐式特征分离法(CBS)作为流体求解器,分别采用有限元法、边基光滑点插值方法(ES-PIM)以及点基局部光滑点插值方法(NPS-PIM)作为固体求解器,比较不同固体求解器条件下的计算精度和效率. 结果表明,与边基光滑点插值方法和有限元法相比,在流固耦合模型中采用点基局部光滑点插值法可以得到更准确的固体模型刚度,也更有利于计算精度和计算效率的提高.

关键词: 浸没方法流固耦合有限元法光滑点插值方法计算效率    
Abstract:

The traditional finite element method (FEM) suffers the low accuracy problems for low order elements due to the overly stiffness problem in solid model. Thus, the smoothed point interpolation method (S-PIM) was employed. S-PIM has been proved to be able to soften solid stiffness through the gradient smoothing operation, and improve the accuracy of solving solid problems by using the linear background mesh, easily to be meshed. Different solid solvers can be got by different ways of constructing smoothing domains, improving the computational accuracy differently. In the framework of immersed smoothed point interpolation method (IS-PIM), the semi-implicit characteristic-based split (CBS) procedure was used as fluid solver in fluid-structure interactions (FSI) model, the performance of different solid solvers, including FEM, edge-based smoothed point interpolation method (ES-PIM) and the node-based partly smoothed point interpolation method (NPS-PIM), were compared to each other in terms of accuracy and efficiency. Results show that the NPS-PIM can get more accurate stiffness of solid model, and get better results in computational accuracy and computational efficiency comparing with ES-PIM and FEM.

Key words: immersed method    fluid-structure interaction    finite element method    smoothed point interpolation method    computational efficiency
收稿日期: 2019-04-28 出版日期: 2020-08-28
CLC:  O 357.1  
基金资助: 国家自然科学基金资助项目(51639003);中央高校基本科研业务费资助项目(DUT20TD108,DUT20LAB308);辽宁省兴辽英才计划资助项目(XLYC1908027)
通讯作者: 张桂勇     E-mail: uheverlast@mail.dlut.edu.cn;gyzhang@dlut.edu.cn
作者简介: 黄硕(1996—),男,硕士生,从事流固耦合研究. orcid.org/0000-0002-7573-8427. E-mail: uheverlast@mail.dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄硕
王双强
王鹏
张桂勇

引用本文:

黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.

Shuo HUANG,Shuang-qiang WANG,Peng WANG,Gui-yong ZHANG. Comparative study of application of smoothed point interpolation method in fluid-structure interactions. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1645-1654.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.025        http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1645

图 1  边基光滑域构造[21]
图 2  点基光滑域构造[19]
图 3  点基局部光滑域构造[19]
图 4  圆盘沉降问题的几何模型以及网格划分模型
图 5  点A在竖直方向上的速度-时间曲线
图 6  流体在不同时刻处水平方向速度场
图 7  流体在不同时刻处竖直方向速度场
图 8  流体在不同时刻处压力场
图 9  流域内弹性梁变形问题计算模型
固体网格 尺寸/cm 节点数 单元数
MS1 1/50 123 160
MS2 1/60 196 288
MS3 1/75 244 360
MS4 1/100 405 640
MS5 1/300 3133 5760
表 1  流域内弹性梁变形问题固体网格设置
流体网格 尺寸/cm 节点数 单元数
MF1 1/50 10251 20000
MF2 1/100 40501 80000
表 2  流域内弹性梁变形问题流体网格设置
图 10  不同固体求解器下点A水平位移随时间变化的曲线
图 11  3种方法固体位移云图
图 12  采用不同固体求解器得到的速度云图和流线图
求解器 固体网格
MS1 MS2 MS3 MS4
FEM 1.27×10?1 6.85×10?2 6.25×10?2 2.80×10?2
ES-PIM 3.21×10?2 1.02×10?2 1.09×10?2 6.10×10?3
NPS-PIM 7.40×10?3 4.70×10?3 3.10×10?3 2.50×10?3
表 3  流体网格为MF1时的计算误差
求解器 固体网格
MS1 MS2 MS3 MS4
FEM 5.26×103 5.40×103 5.48×103 5.72×103
ES-PIM 1.33×104 1.34×104 1.35×104 1.38×104
NPS-PIM 7.03×103 7.21×103 7.17×103 7.54×103
表 4  流体网格为MF1时的计算时间
求解器 固体网格
MS1 MS2 MS3 MS4
FEM 1.000 1.000 1.000 1.000
ES-PIM 1.566 2.695 2.327 1.902
NPS-PIM 12.844 10.909 15.410 8.490
表 5  流体网格为MF1时的计算效率
求解器 固体网格
MS1 MS2 MS3 MS4
FEM 1 .000 1.000 1.000 1.000
ES-PIM 1.396 0.924 0.942 0.790
NPS-PIM 4.653 9.440 21.913 13.841
表 6  流体网格为MF2时的计算效率
图 13  顶腔驱动流体作用于超弹性墙问题计算模型
固体网格 尺寸/cm 节点数 单元数
MS1 1/40 1701 3200
MS2 1/50 2652 5050
MS3 1/100 10251 20000
表 7  超弹性墙问题固体网格设置
求解器 固体网格
MS1 MS2
FEM 5.06×10?1 5.04×10?1
ES-PIM 1.58×10?1 1.57×10?1
NPS-PIM 9.06×10?3 8.30×10?3
表 8  流体网格节点数为16641时的计算误差
求解器 固体网格
MS1 MS2
FEM 9.35×103 1.17×104
ES-PIM 1.79×104 2.30×104
NPS-PIM 1.26×104 1.50×104
表 9  流体网格节点数为16641时的计算时间
求解器 固体网格
MS1 MS2
FEM 1.000 1.000
ES-PIM 1.672 1.622
NPS-PIM 39.086 47.235
表 10  流体网格节点数为16641时的计算效率
图 14  采用NPS-PIM作为固体求解器得到的水平速度云图和流线图
1 PESKIN C S Flow patterns around heart valves: a numerical method[J]. Journal of Computational Physics, 1972, 10 (2): 252- 271
doi: 10.1016/0021-9991(72)90065-4
2 罗海宁, 黄伟希 移动最小二乘浸没边界法中的权函数影响分析[J]. 计算力学学报, 2017, 34 (4): 487- 492
LUO Hai-ning, HUANG Wei-xi The impact analysis of weight finction in immersed boundary methods by the moving least square[J]. Chinese Journal of Computational Mechanics, 2017, 34 (4): 487- 492
doi: 10.7511/jslx201704014
3 何跃龙, 李盾, 刘帅, 等 基于指数插值的浸没边界法在可压缩流模拟中的应用研究[J]. 空气动力学学报, 2016, 34 (4): 426- 432
HE Yue-long, LI Dun, LIU Shuai, et al The application of power-law interpolation based immersed boundary method in compressible flow simulation[J]. Acta Aerodynamica Sinica, 2016, 34 (4): 426- 432
doi: 10.7638/kqdlxxb-2014.0107
4 GLOWINSKI R, PANT W, HESLA T I, et al A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow[J]. International Journal for Numerical Methods in Fluids, 1999, 30 (8): 1043- 1066
doi: 10.1002/(SICI)1097-0363(19990830)30:8<1043::AID-FLD879>3.0.CO;2-Y
5 WANG T, PANT W, GLOWINSKI R, et al A fictitious domain method for simulating viscous flow in a constricted elastic tube subject to a uniform external pressure[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26 (3/4): 290- 304
6 陈凯, 余钊圣, 邵雪明 多孔介质方腔自然对流的直接数值模拟[J]. 浙江大学学报: 工学版, 2012, 46 (3): 549- 554
CHEN Kai, YU Zhao-sheng, SHAO Xue-ming Direct simulation of natural convection in square cavity filled with porus media[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (3): 549- 554
7 林昭武. 基于并行虚拟区域方法的颗粒悬浮流直接数值模拟研究[D]. 杭州: 浙江大学, 2016.
LIN Zhao-wu. Direct numercial simulation of particulate flows with the parallel fictitious domain method [D]. Hagnzhou: Zhejiang University, 2016.
8 ZHANG L T, GERSTENBERGER A, WANG X, et al Immersed finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193 (21/22): 2051- 2067
9 LIU W K, KIM D W, TANG S Mathematical foundations of the immersed finite element method[J]. Computational Mechanics, 2007, 39 (3): 211- 222
10 吴家阳, 熊智勇, 杨峰, 等 浸没边界-格子玻尔兹曼方法的GPU并行加速[J]. 中国科技论文, 2018, 13 (5): 517- 521
WU Jia-yang, XIONG Zhi-yong, YANG Feng, et al GPU accelerated immersed boundary-lattice Boltzmann coupling method[J]. China Sciencepaper, 2018, 13 (5): 517- 521
doi: 10.3969/j.issn.2095-2783.2018.05.006
11 刘克同, 汤爱平, 刘玥君, 等 基于浸没边界和格子玻尔兹曼的流固耦合算法[J]. 华中科技大学学报: 自然科学版, 2015, 43 (1): 61- 66
LIU Ke-tong, TANG Ai-ping, LIU Yue-jun, et al Fluid-structure interaction method using immersed boundary and lattice Boltzmann method[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (1): 61- 66
12 GILMANOV A, SOTIROPOULOS F A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies[J]. Journal of Computational Physics, 2005, 207 (2): 457- 492
doi: 10.1016/j.jcp.2005.01.020
13 ZHANG G Y, LU H, YU D P, et al A node-based partly smoothed point interpolation method (NPS-PIM) for dynamic analysis of solids[J]. Engineering Analysis with Boundary Elements, 2018, 87: 165- 172
doi: 10.1016/j.enganabound.2017.12.002
14 HOU G, WANG J, LAYTON A Numerical methods for fluid-structure interaction: a review[J]. Communications in Computational Physics, 2012, 12 (2): 337- 377
doi: 10.4208/cicp.291210.290411s
15 ZHANG Z Q, LIU G R, KHOO B C Immersed smoothed finite element method for two dimensional fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering, 2012, 90 (10): 1292- 1320
doi: 10.1002/nme.4299
16 JIANG C, YAO J Y, ZHANG Z Q, et al A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 340 (1): 24- 53
17 WANG S Q, ZHANG G Y, ZHANG Z Q, et al An immersed smoothed point interpolation method (IS-PIM) for fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids, 2017, 85 (4): 213- 234
doi: 10.1002/fld.4379
18 WANG S Q, CAI Y N, ZHANG G Y, et al A coupled immersed boundary-lattice Boltzmann method with smoothed point interpolation method for fluid-structure interaction problems[J]. International Journal for Numerical Methods in Fluids, 2018, 88 (8): 363- 384
doi: 10.1002/fld.4669
19 ZHANG G Y, WANG S Q, LU H, et al Coupling immersed method with node-based partly smoothed point interpolation method (NPS-PIM) for large-displacement fluid-structure interaction problems[J]. Ocean Engineering, 2018, 157: 80- 201
20 LIU G R, ZHANG G Y. Smoothed point interpolation methods: G space and weakened weak forms [M]. Singapore: World Scientific Press, 2013.
21 LIU G R, ZHANG G Y Edge-based smoothed point interpolation methods[J]. International Journal of Computational Methods, 2008, 5 (4): 621- 646
doi: 10.1142/S0219876208001662
22 ZHANG G Y, LIU G R, WANG Y Y, et al A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems[J]. International Journal for Numerical Methods in Engineering, 2010, 72 (13): 1524- 1543
23 LIU G R, ZHANG G Y Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM)[J]. International Journal for Numerical Methods in Engineering, 2008, 74 (7): 1128- 1161
doi: 10.1002/nme.2204
24 鲁欢, 于大鹏, 张桂勇, 等 应用点基局部光滑点插值法的固有频率上下界计算[J]. 西安交通大学学报, 2017, 51 (5): 165- 172
LU Huan, YU Da-peng, ZHANG Gui-yong, et al Node-locally-based smoothed point interpolation method for calculating upper/lower bounds of natural frequency[J]. Journal of Xi’an Jiaotong University, 2017, 51 (5): 165- 172
25 张桂勇, 鲁欢, 王海英, 等 基于点基局部光滑点插值法的结构动力分析[J]. 振动与冲击, 2018, 37 (17): 241- 248
ZHANG Gui-yong, LU Huan, WANG Hai-ying, et al Structual dynamics analysis using NPSPIM[J]. Journal of Vibration and Shock, 2018, 37 (17): 241- 248
26 ZIENKIEWICZ O C, NITHIARASU P, CODINA R, et al The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems[J]. International Journal for Numerical Methods in Fluids, 1999, 31 (1): 359- 392
doi: 10.1002/(SICI)1097-0363(19990915)31:1<359::AID-FLD984>3.0.CO;2-7
27 ZIENKIEWICZ O C, TAYLOR R L. The finite element method, 5th edition [M]. Oxford: Butterworth Heinemann, 2000.
28 BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. New York: John Wiley, 2000.
29 CLIFT R. Bubbles, drops, and particles [M]. New York: Academic Press, 1978.
[1] 刘晶晶,陈铁林,姚茂宏,魏钰昕,周子健. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726.
[2] 童水光,何顺,童哲铭,李元松,徐征宇,方晓晖,谭达辉,钟玉伟. 基于导重法的叉车门架轻量化设计[J]. 浙江大学学报(工学版), 2020, 54(1): 33-39.
[3] 邱驰,黄建坤,胡雨村,郭小平,胡云卿. 灌溉对西北干旱荒漠区排土场边坡稳定的影响—以乌海市新星煤矿为例[J]. 浙江大学学报(工学版), 2019, 53(8): 1467-1477.
[4] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[5] 胡鹏,韩健健,雷云龙. 基于局部分级时间步长方法的水沙耦合数学模拟[J]. 浙江大学学报(工学版), 2019, 53(4): 743-752.
[6] 曹文翰,龚俊,王宏刚,高贵,祁渊,杨东亚. 盖封密封磨损-热-应力耦合模拟与优化设计[J]. 浙江大学学报(工学版), 2019, 53(2): 258-267.
[7] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[8] 杨超, 张怀新. 移动粒子半隐式法模拟入水冲击流固耦合问题[J]. 浙江大学学报(工学版), 2018, 52(11): 2092-2097.
[9] 谢颖, 黑亮声, 华邦杰, 张晓明. 电动汽车用永磁游标电机的设计与研究[J]. 浙江大学学报(工学版), 2018, 52(1): 184-191.
[10] 杜洋, 马利, 郑津洋, 张帆, 张安达. 考虑流固耦合的管道爆炸后果预测与分析[J]. 浙江大学学报(工学版), 2017, 51(3): 429-435.
[11] 李明, 刘扬, 唐雪松. 疲劳裂纹的跨尺度分析[J]. 浙江大学学报(工学版), 2017, 51(3): 524-531.
[12] 李梦暄, 吴价, 郑水英, 应光耀, 刘淑莲. 不同轴瓦结构滑动轴承-转子系统的稳定性[J]. 浙江大学学报(工学版), 2017, 51(11): 2239-2248.
[13] 张俊红,郭迁,王健,徐喆轩,陈孔武. 塑料机油冷却器盖加强筋参数的多目标优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1360-1366.
[14] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[15] 刘震涛, 陈思南, 黄瑞, 尹旭, 俞小莉, 魏志明, 张全中. 高功率密度柴油机气缸盖热负荷分析与优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1544-1552.