Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1585-1595    DOI: 10.3785/j.issn.1008-973X.2024.08.006
机械工程、能源工程     
熔滴复合电弧增材制造2219铝合金组织与性能
王勇超(),魏正英*(),贺鹏飞
西安交通大学 机械制造系统工程国家重点实验室,陕西 西安 710000
Structure and property of 2219 aluminum alloy fabricated by droplet+arc additive manufacturing
Yongchao WANG(),Zhengying WEI*(),Pengfei HE
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710000, China
 全文: PDF(7116 KB)   HTML
摘要:

为了提高铝合金电弧增材制造的质量和效率,采用新型的电弧增材制造工艺——熔滴复合电弧增材制造(DAAM)技术来制造铝合金样品. 采用全新的熔滴生成系统(DGS)代替传统的送丝系统,使得材料的添加与电弧能量相互独立. 成形的材料为2219铝合金,通过熔滴系统添加了微量Mg元素. 利用熔滴复合电弧增材制造设备沉积了薄壁结构,沉积速率较传统电弧增材制造技术大幅提升(约为160 mm3/s). 观察和分析薄壁结构截面的微观组织表明,薄壁结构的晶粒形态以柱状晶为主,呈现层内柱状晶和层间等轴晶的周期性分布规律. 经过T6热处理后,试样水平和垂直方向的平均抗拉强度分别为455.4和417.0 MPa,屈服强度分别为342.4和316.4 MPa. 较之前的研究结果对比表明,Mg元素的添加提升了2219铝合金的屈服强度,但导致延伸率降低.

关键词: 2219铝合金电弧增材制造熔滴微观组织力学性能    
Abstract:

A new arc additive manufacturing process—droplet+arc additive manufacturing (DAAM) technology was applied to manufacture aluminum alloy samples in order to improve the quality and the efficiency of aluminum alloy. A new droplet generation system (DGS) was applied instead of the conventional wire feeding system, which makes the material addition and arc energy independent of each other. The formed material is 2219 aluminum alloy, and a trace amount of Mg element was added through the DGS. A thin-walled structure was deposited using the DAAM system at a significantly higher deposition rate (160 $ {\mathrm{m}\mathrm{m}}^{3}/\mathrm{s} $) than conventional wire and arc additive manufacturing techniques. The microstructure of the cross section of the thin-walled structure was observed and analyzed. Results showed that the grain morphology of the thin-walled structure was dominated by columnar crystals and exhibited a periodic distribution of inner-layer columnar crystals and inter-layer equiaxed crystals. The average tensile strengths in the horizontal and vertical directions were 455.4 MPa and 417.0 MPa after T6 heat treatment, while the yield strengths were 342.2 MPa and 316.4 MPa, respectively. The comparison results with the previous studies show that the addition of Mg element increases the yield strength of 2219 aluminum alloy, but leads to a corresponding decrease in elongation.

Key words: 2219 aluminum alloy    arc additive manufacturing    droplet    microstructure    mechanical property
收稿日期: 2023-10-24 出版日期: 2024-07-23
CLC:  TG 444  
基金资助: 国家自然科学基金资助项目(52275376).
通讯作者: 魏正英     E-mail: wyc0228@stu.xjtu.edu.cn;zywei@mail.xjtu.edu.cn
作者简介: 王勇超(1999—),男,硕士生,从事铝合金电弧增材制造的研究. orcid.org/0009-0002-5342-9727. E-mail:wyc0228@stu.xjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王勇超
魏正英
贺鹏飞

引用本文:

王勇超,魏正英,贺鹏飞. 熔滴复合电弧增材制造2219铝合金组织与性能[J]. 浙江大学学报(工学版), 2024, 58(8): 1585-1595.

Yongchao WANG,Zhengying WEI,Pengfei HE. Structure and property of 2219 aluminum alloy fabricated by droplet+arc additive manufacturing. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1585-1595.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.006        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1585

图 1  熔滴复合电弧增材制造实验设备的原理图
图 2  熔滴复合电弧增材制造实验设备的组成图
w(Cu)w(Mn)w(Mg)w(Zn)w(V)w(Ti)w(Zr)w(Si)w(Fe)w(Al)
注:1)表示剩余的均为Al.
5.8~6.80.2~0.40.20.10.05~0.150.02~0.100.1~0.250.10~0.200.20~0.30Bal.1)
表 1  2219铝合金的化学元素组成
图 3  GTA电流波形
参数数值
基值电流IB/A0.5IP
基板温度θB/℃260
移动速度TS/(mm·s?1)8
沉积速率DR/(mm3·s?1)160
电弧脉冲频率farc/Hz10
保护气体积流量qVAr/(L·min?1)15
交流频率/Hz50
液滴直径/mm0.71
液滴频率/Hz500~1 000
坩埚熔体温度/℃700
表 2  熔滴复合电弧增材制造薄壁结构的主要工艺参数
图 4  峰值电流的特性曲线
图 5  T6热处理工艺曲线
图 6  薄壁结构取样位置的示意图及拉伸试样的几何尺寸
图 7  薄壁结构的宏观形态
图 8  横截面的光学显微镜图
图 9  晶粒形态演化示意图与实验结果
图 10  薄壁结构横截面的EBSD图
图 11  薄壁结构纵截面的EBSD图
截面区域0.02% Mg0.2% Mg
dg/μmItdg/μmIt
横截面顶部146.728122.410.63
中部102.522.982.89.47
第2层6412.450.43.85
纵截面中部98.817.7108.211.81
底部41.63.229.83.85
表 3  不同条件下横、纵截面的平均晶粒尺寸与织构强度
图 12  沉积态试样层内区域与层间区域的SEM图像
图 13  试样横截面沉积态与T6热处理后的SEM图像
图 14  沉积态与T6热处理后试样的EDS谱图
图 15  沉积态试样纵截面的SEM图像
图 16  沉积态试样的XRD谱图
图 17  薄壁结构的显微硬度
图 18  DAAM试样水平和垂直方向的拉伸性能
文献工艺状态水平方向垂直方向
UTS/MPaYS/MPaEL/%UTS/MPaYS/MPaEL/%
文献[24]TIGAD273±7183±42.7±1
文献[24]TIGT6397±4303±55.3±1
文献[25]CMT+RolledAD269±5135±318.8±2265±5131±315.3±2
文献[25]CMT+RolledT6465±6325±513.2±1450±6305±513.5
文献[26]GTAAD251±12107±1810.48
文献[26]GTAT6418±22269±2810.24365±28254±287.44
文献[8]CMTAD257.811310.6231.3113.56.5
文献[8]CMTT64152947.73343123.5
文献[27]CMTAD26311412.526111313.1
文献[27]CMTT646129814.63712964.5
文献[19]DAAMAD248±4.5119±1.514.0±1212±1.590±112.6±0.2
文献[19]DAAMT6435±9.8282.9±410.5±0.8406.5±1299±4.516.5±1.8
本文DAAMAD230.6±3.292±1.59.4±0.7215±388±1.57.6±1.3
本文DAAMT6455.4±4.3342.4±48.3±0.4417±12.1316.4±4.58.9±4
表 4  2219铝合金电弧增材制造的力学性能
图 19  T6热处理后拉伸试样的断口形貌
1 JIN P, REN H S, LIU Y B, et al Microstructural evolution and mechanical properties of 2219 aluminum alloy deposited by wire and arc additive manufacturing[J]. Advanced Engineering Materials, 2022, 24 (9): 1- 13
2 孙佳孝, 杨可, 王秋雨, 等 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57 (5): 665- 674
SUN Jiaxiao, YANG Ke, WANG Qiuyu, et al Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metallurgica Sinica, 2021, 57 (5): 665- 674
3 吴江东, 刘德华, 张子傲, 等 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59 (6): 767- 776
WU Jiangdong, LIU Dehua, ZHANG Ziao, et al Microstructure and mechanical properties of 2024 aluminum alloy prepared by wire arc additive manufacturing[J]. Acta Metallurgica Sinica, 2023, 59 (6): 767- 776
4 BAI J Y, YANG C L, LIN S B, et al Mechanical properties of 2219-Al components produced by additive manufacturing with TIG[J]. International Journal of Advanced Manufacturing Technology, 2015, 86 (1-4): 479- 485
5 OLIVEIRA J P, LALONDE A D, MA J Processing parameters in laser powder bed fusion metal additive manufacturing[J]. Materials and Design, 2020, 193: 108762
6 TOMAR B, SHIVA S, NATH T A review on wire arc additive manufacturing: processing parameters, defects, quality improvement and recent advances[J]. Materials Today Communications, 2022, 31: 103739
7 BRICE C, SHENOY R, KRAL M, et al Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing[J]. Materials Science and Engineering, 2015, 648: 9- 14
doi: 10.1016/j.msea.2015.08.088
8 李权, 王国庆, 罗志伟, 等 2219铝合金电弧增材制造组织及力学性能的非均匀性[J]. 稀有金属材料与工程, 2020, 48 (11): 3969- 3976
LI Quan, WANG Guoqing, LUO Zhiwei, et al Inhomogeneity of microstructures and mechanical properties of 2219 aluminum alloy by WAAM[J]. Rare Metal Materials and Engineering, 2020, 48 (11): 3969- 3976
9 LIU G C, XIONG J, TANG L Microstructure and mechanical properties of 2219 aluminum alloy fabricated by double-electrode gas metal arc additive manufacturing[J]. Additive Manufacturing, 2020, 35: 101375
10 ZHOU Y H, LIN X, KANG N, et al Influence of travel speed on microstructure and mechanical properties of wire+arc additively manufactured 2219 aluminum alloy[J]. Journal of Materials Science and Technology, 2020, 37: 143- 153
doi: 10.1016/j.jmst.2019.06.016
11 REN L, WANG Z, WANG S, et al The effect of Cu content on the microstructure and properties of the wire arc additive manufacturing Al-Cu Alloy[J]. Materials (Basel), 2023, 16 (7): 2694- 2705
doi: 10.3390/ma16072694
12 ZHOU Y H, LIN X, KANG N, et al The heterogeneous band microstructure and mechanical performance in a wire+arc additively manufactured 2219 Al alloy[J]. Additive Manufacturing, 2022, 49: 102486
13 禹润缜, 赵峰, 余圣甫, 等 电弧熔丝增材制造ER2319铝堆积金属的组织性能及T6热处理工艺优化[J]. 金属热处理, 2021, 46 (4): 49- 59
YU Runzhen, ZHAO Feng, YU Shengfu, et al Microstructure, properties and T6 heat treatment process optimization for wire arc additive manufacturing ER2319 aluminum deposited metals[J]. Heat Treatment of Metals, 2021, 46 (4): 49- 59
14 MCLEAN N, BERMINGHAM M J, COLEGROVE P, et al Effect of hot isostatic pressing and heat treatments on porosity of wire arc additive manufactured Al 2319[J]. Journal of Materials Processing Technology, 2022, 310: 117769
15 HUANG L, CHEN X Z, KONOVALOV S, et al A review of challenges for wire and arc additive manufacturing (WAAM)[J]. Transactions of the Indian Institute of Metals, 2023, 76 (5): 1123- 1139
doi: 10.1007/s12666-022-02823-y
16 余圣甫, 禹润缜, 何天英, 等 电弧增材制造技术及其应用的研究进展[J]. 中国材料进展, 2021, 40 (3): 198- 209
YU Shengfu, YU Runzhen, HE Tianying, et al Wire arc additive manufacturing and its application: research progress[J]. Materials China, 2021, 40 (3): 198- 209
doi: 10.7502/j.issn.1674-3962.202011006
17 CONG B Q, QI Z W, QI B J, et al A comparative study of additively manufactured thin wall and block Structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7 (3): 275- 286
doi: 10.3390/app7030275
18 DONG M Y, ZHAO Y, LI Q, et al Effects of Cd addition in welding wires on microstructure and mechanical property of wire and arc additively manufactured Al−Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32 (3): 750- 764
doi: 10.1016/S1003-6326(22)65830-8
19 HE P F, WEI Z Y, WANG Y C, et al A novel droplet+arc additive manufacturing for aluminum alloy: method, microstructure and mechanical properties[J]. Additive Manufacturing, 2023, 61: 103356
doi: 10.1016/j.addma.2022.103356
20 WANG Z N, XIN L, WANG L L, et al Novel high-strength Al-Cu-Cd alloy fabricated by arc-directed energy deposition: precipitation behavior of the Cd phase and grain evolution[J]. Additive Manufacturing, 2022, 60: 103278
21 WANG Z H, GAO Y F, HUANG J L, et al Precipitation phenomena and strengthening mechanism of Al–Cu alloys deposited by in-situ rolled wire-arc additive manufacturing[J]. Materials Science and Engineering, 2022, 855: 143770
22 LI Z Q, REN W R, CHEN H W, et al θ′′′ precipitate phase, GP zone clusters and their origin in Al-Cu alloys[J]. Journal of Alloys and Compounds, 2023, 930: 167396
23 KIM I S , SONG M Y, KIM J H, et al Effect of added Mg on the clustering and two-step aging behavior of Al–Cu alloys[J]. Materials Science and Engineering: A, 2020, 798: 140123
24 ZHOU Y H, LIN X, KANG N, et al Mechanical properties and precipitation behavior of the heat-treated wire+arc additively manufactured 2219 aluminum alloy[J]. Materials Characterization, 2021, 171: 110735
25 GU J L, DING J L, WILLIAMS S W, et al The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy[J]. Materials Science and Engineering, 2016, 615 (10): 18- 26
doi: 10.1016/j.msea.2015.10.101
26 BAI J Y, FAN C L, LIN S B, et al Mechanical properties and fracture behaviors of GTA-additive manufactured 2219-Al after an especial heat treatment[J]. Journal of Materials Engineering and Performance, 2017, 26 (4): 1808- 1816
doi: 10.1007/s11665-017-2627-5
[1] 李晓东,弓耀云,马顺利,陈恩亮,张振永. 具有特殊功能的钢结构节点的力学性能[J]. 浙江大学学报(工学版), 2023, 57(3): 522-529.
[2] 靳佳澳,沈洪垚,孙扬帆,林嘉浩,陈静霓. 面向电弧增材的单线激光扫描路径规划[J]. 浙江大学学报(工学版), 2023, 57(1): 21-31.
[3] 阮圣倩,王铁龙,陈士堃,刘毅,闫东明. 内掺PDMS对地聚合物性能和微观结构的影响[J]. 浙江大学学报(工学版), 2022, 56(7): 1302-1309.
[4] 詹志文,张凌新,邓见,邵雪明. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
[5] 杜军,马琛,魏正英. 基于视觉传感的铝合金电弧增材沉积层形貌动态响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1481-1489.
[6] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[7] 季宪泰,文世峰,魏青松,周燕,陈志平. 淬火处理对激光选区熔化成形S136组织与性能的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 664-670.
[8] 范圣刚, 张岁寒, 孟畅. 高温冷却后奥氏体不锈钢力学性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2348-2354.
[9] 韩中合,白亚开,王继选. 冷冻氨脱碳机组流程仿真及其耦合方式优化[J]. 浙江大学学报(工学版), 2016, 50(3): 499-507.
[10] 李强, 金贤玉. 箍筋锈蚀对轴压混凝土短柱承载力的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1929-1938.
[11] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. J4, 2014, 48(2): 221-227.
[12] 姚华,盛德仁,陈坚红,李蔚,洪荣华. 重力热管蒸汽发生器热力学分析[J]. J4, 2012, 46(9): 1678-1684.
[13] 姚华,盛德仁,林张新,宋思远,陈坚红,李蔚. 炼铁伴生能源联合循环系统热力学性能分析[J]. J4, 2011, 45(11): 2008-2013.
[14] 金晗辉, 李清平, 陈丽华, 樊建人, 吕琳. 室内悬浮颗粒物分布及输运特性的实验研究[J]. J4, 2010, 44(9): 1793-1797.
[15] 苏锋, 蒋晔, 蔡永昌. 钢管混凝土梁柱节点受力性能有限元分析[J]. J4, 2010, 44(10): 1876-1882.