Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1577-1584    DOI: 10.3785/j.issn.1008-973X.2024.08.005
机械工程、能源工程     
屏蔽式离心泵浮动叶轮轴向力平衡方法
王鑫1(),吴一帆2,吴成硕1,武鹏1,*(),杨帅1,吴大转1
1. 浙江大学 能源工程学院,浙江 杭州 310027
2. 中国船舶集团有限公司 第七〇五研究所昆明分部,云南 昆明 650118
Axial force balance method for floating impeller of shielded centrifugal pump
Xin WANG1(),Yifan WU2,Chengshuo WU1,Peng WU1,*(),Shuai YANG1,Dazhuan WU1
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Kunming Branch of the 705th Research Institute of China State Shipbuilding Corporation Limited Company, Kunming 650118, China
 全文: PDF(2209 KB)   HTML
摘要:

为了实现屏蔽泵离心叶轮轴向力平衡,设计浮动叶轮轴向力自平衡结构,借助全流道三维数值模拟手段,研究浮动叶轮的轴向力平衡作用机理和影响因素. 在对数值模拟方法进行试验验证的基础上,开展针对不同工况下叶轮不同轴向位置轴向力的数值计算. 数值模拟结果表明,在同一流量工况下,在叶轮浮动范围内,当叶轮向泵入口方向移动时,泵前腔泄漏量减小,扬程和效率增大,且越靠近入口,对泵的性能影响越显著. 轴向力呈现先减后增的趋势,在远离入口时方向指向泵入口,在靠近入口时,叶轮轴向力迅速增大,实现反向,指向泵出口,帮助叶轮停止向入口移动,这种轴向力变化趋势可以使叶轮在工作时始终处于浮动状态,实现轴向力自平衡.

关键词: 离心泵浮动叶轮轴向位置轴向力    
Abstract:

A floating impeller design with axial force self-balancing capability was proposed to balance the axial force of the centrifugal impeller of the shielded pump. The mechanism and influencing factors of the axial force balance were analyzed through three-dimensional numerical simulation of the full flow path. Numerical calculations were conducted under various operating conditions and impeller positions after validating the simulation method. Results show that leakage decreases, head and efficiency increase when moving towards the inlet within the impeller’s floating range. The closer towards the inlet, the more significant impact on the pump performance is. The axial force initially decreases but then increases. The direction points to the pump inlet when it is far from the inlet. The impeller axial force increases rapidly to realize the reverse when it is close to the pump inlet, pointing to the pump outlet and helping the impeller stop moving to the inlet. This trend of axial force change can make the impeller always be in a floating state when working and realize the axial force self-balancing.

Key words: centrifugal pump    floating impeller    axial position    axial force
收稿日期: 2023-07-07 出版日期: 2024-07-23
CLC:  TH 311  
基金资助: 国家自然科学基金资助项目(51839010).
通讯作者: 武鹏     E-mail: 22127040@zju.edu.cn;roc@zju.edu.cn
作者简介: 王鑫(1998—),男,硕士生,从事流体机械水力优化设计的研究. orcid.org/0009-0000-6257-9757. E-mail:22127040@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王鑫
吴一帆
吴成硕
武鹏
杨帅
吴大转

引用本文:

王鑫,吴一帆,吴成硕,武鹏,杨帅,吴大转. 屏蔽式离心泵浮动叶轮轴向力平衡方法[J]. 浙江大学学报(工学版), 2024, 58(8): 1577-1584.

Xin WANG,Yifan WU,Chengshuo WU,Peng WU,Shuai YANG,Dazhuan WU. Axial force balance method for floating impeller of shielded centrifugal pump. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1577-1584.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.005        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1577

图 1  浮动叶轮结构的示意图
图 2  循环回路的示意图
图 3  泵主要结构的三维模型
参数数值
比转速${n_{\mathrm{s}}}$61
叶轮入口直径${D_1}/{{\mathrm{mm}}} $22
叶轮出口直径${D_2}/{{\mathrm{mm}}} $60
叶轮出口宽度${b_2}/{{\mathrm{mm}}} $2
叶片数${Z_1}$ (长+短)
叶片包角$\varphi /(^\circ) $
叶片厚度$t/{{\mathrm{mm}}} $
5+5
120
1
导叶数${Z_{\mathrm{g}}}$13
背叶片数${Z_2}$4
背叶片高度$H/{{\mathrm{mm}}} $13
背叶片宽度$W/{{\mathrm{mm}}} $3
背叶片厚度$T/{{\mathrm{mm}}} $1.65
叶轮轴向浮动范围$d/{{\mathrm{mm}}} $0.8
表 1  泵的主要参数
图 4  泵计算域模型
计算域N/${10^6}$网格类型
进口段0.33非结构化
前盖板间隙1.40结构化
叶轮1.10结构化
背叶片
导叶
1.74
1.91
非结构化
结构化
后盖板间隙1.37结构化
出口段0.96非结构化
表 2  网格划分情况
图 5  泵的主要部件网格
图 6  网格无关性验证
图 7  模型泵测试平台
项目精度量程
进口压力表$ \pm 0.01{\text{%}} $$ - 0.1 \sim 0{\text{ }}{{\mathrm{MPa}}} $
出口压力表$ \pm 0.01{\text{%}} $$0 \sim 0.25{\text{ }}{{\mathrm{MPa}}} $
流量计$ \pm 0.3{\text{%}} $$0 \sim 5{\text{ }}{{{\mathrm{m}}} ^3}/{\mathrm{h}}$
转速$ \pm 0.5{\text{%}} $$500 \sim 40{\text{ }}000{\text{ }}{{\mathrm{r}}} /{\mathrm{min}}$
电压$ \pm 1.5{\text{%}} $$10 \sim 300{\text{ }}{{\mathrm{V}}} $
电流$ \pm 1.5{\text{%}} $$0 \sim 5{\text{ }}{{\mathrm{A}}} $
表 3  测量仪表的量程及精度
图 8  水力性能模拟与试验对比曲线
图 9  叶轮轴向相对位置的示意图
图 10  前口环泄露质量流量与叶轮轴向位置的关系曲线
图 11  泵水力性能参数与叶轮轴向位置的关系曲线
图 12  叶轮轴向合力与轴向位置关系的曲线
图 13  叶轮各部分轴向力分布表面
图 14  不同工况下的叶轮轴向力分量
图 15  间隙内监测线位置
图 16  不同工况下的前、后盖板间隙静压分布
1 马旭丹, 吴大转, 王乐勤 多级离心泵轴向力平衡装置的设计与分析[J]. 农业工程学报, 2010, 26 (8): 108- 112
MA Xudan, WU Dazhuan, WANG Leqin Design and analysis of axial force balance device for multi-stage centrifugal pumps[J]. Journal of Agricultural Engineering, 2010, 26 (8): 108- 112
doi: 10.3969/j.issn.1002-6819.2010.08.018
2 汪东山, 杜永峰, 吕雪 平衡孔位置对离心泵轴向力影响的数值模拟研究[J]. 液压气动与密封, 2021, 41 (10): 9- 14
WANG Dongshan, DU Yongfeng, LV Xue Numerical simulation study on the effect of balance hole position on axial force of centrifugal pumps[J]. Hydraulic Pneumatic and Sealing, 2021, 41 (10): 9- 14
doi: 10.3969/j.issn.1008-0813.2021.10.003
3 刘在伦, 徐航, 芦维强, 等 后密封环直径对离心泵轴向力特性的影响[J]. 排灌机械工程学报, 2020, 38 (2): 115- 120
LIU Zailun, XU Hang, LU Weiqiang, et al The effect of rear sealing ring diameter on the axial force characteristics of centrifugal pumps[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38 (2): 115- 120
4 赵万勇, 王钊, 杨登峰, 等 多级泵平衡盘动态平衡的理论研究[J]. 流体机械, 2012, 40 (9): 35- 38
ZHAO Wanyong, WANG Zhao, YANG Dengfeng, et al Theoretical study on dynamic equilibrium of multistage pump balance disc[J]. Fluid Machinery, 2012, 40 (9): 35- 38
doi: 10.3969/j.issn.1005-0329.2012.09.008
5 MORTAZAVI F, RIASI A, NOURBAKHSH A Numerical investigation of back vane design and its impact on pump performance[J]. Journal of Fluids Engineering, 2017, 139 (12): 121104
doi: 10.1115/1.4037281
6 刘在伦, 陈淘利, 芦维强 叶轮背叶片对离心泵轴向力影响的试验及分析[J]. 排灌机械工程学报, 2019, 37 (12): 1013- 1018
LIU Zailun, CHEN Taoli, LU Weiqiang Experimental and analytical study on the influence of impeller back blades on axial force of centrifugal pumps[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37 (12): 1013- 1018
7 KIM J An experimental study on influence of wearing seal groove shape to performance of the pump[J]. Journal of the Korean Society of Marine Engineering, 2014, 38 (3): 285- 291
8 CAO W, DAI X, HU Q Effect of impeller reflux balance holes on pressure and axial force of centrifugal pump[J]. Journal of Central South University, 2015, 22 (5): 1695- 1706
doi: 10.1007/s11771-015-2688-2
9 林玲, 牟介刚, 郑水华, 等 叶轮背叶片与盖板的间隙对平衡轴向力的影响[J]. 机械设计与制造, 2013, (12): 228- 230
LIN Ling, MOU Jiegang, ZHENG Shuihua, et al The effect of the clearance between the impeller back blade and the cover plate on the balanced axial force[J]. Mechanical Design and Manufacturing, 2013, (12): 228- 230
doi: 10.3969/j.issn.1001-3997.2013.12.068
10 魏清顺, 刘在伦 基于CFD的离心泵浮动叶轮平衡腔压力数值分析与验证[J]. 中国电机工程学报, 2011, 31 (14): 103- 108
WEI Qingshun, LIU Zailun Numerical analysis and verification of balance chamber pressure of floating impeller in centrifugal pump based on CFD[J]. Chinese Journal of Electrical Engineering, 2011, 31 (14): 103- 108
11 刘在伦, 吴佼, 曾继来, 等 浮动叶轮轴向位移量对泵水力性能的影响[J]. 兰州理工大学学报, 2015, 41 (2): 51- 54
LIU Zailun, WU Jiao, ZENG Jilai, et al The effect of axial displacement of floating impeller on pump hydraulic performance[J]. Journal of Lanzhou University of Technology, 2015, 41 (2): 51- 54
doi: 10.3969/j.issn.1673-5196.2015.02.011
12 JIN F, TAO R, ZHU D, et al Stability of the axial-auto-balanced impeller of centrifugal pump[J]. Journal of Hydrodynamics, 2022, 34 (1): 665- 680
13 施卫东, 李启锋, 陆伟刚, 等. 基于CFD的离心泵轴向力计算与试验[J]. 农业机械学报, 2009, 40(1): 60-63.
SHI Weidong, LI Qifeng, LU Weigang, et al Calculation and testing of axial force of centrifugal pumps based on CFD [J]. Journal of Agricultural Machinery , 2009, 40 (1): 60-63.
14 JO S, SHIN D Reduction of the axial force of water pump using CFD[J]. Transaction of the Korean Society of Automotive Engineers, 2012, 20 (3): 83- 87
doi: 10.7467/KSAE.2012.20.3.083
15 HE Y, ANDREW E, ALI H Coupling CFD-DEM with dynamic meshing: a new approach for fluid-structure interaction in particle-fluid flows[J]. Powder Technology, 2018, 325 (5): 620- 631
16 胡晓东, 王秀勇, 刘在伦, 等 基于核主泵性能预测的数值模拟精度研究[J]. 核动力工程, 2019, 40 (4): 127- 133
HU Xiaodong, WANG Xiuyong, LIU Zailun, et al Research on numerical simulation accuracy based on performance prediction of nuclear main pumps[J]. Nuclear Power Engineering, 2019, 40 (4): 127- 133
[1] 陈晓丹,吴澳,赵睿杰,徐恩翔. 磁悬浮无轴离心泵叶轮转子动力学特性[J]. 浙江大学学报(工学版), 2023, 57(8): 1680-1688.
[2] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[3] 童水光,赵航,刘会琴,童哲铭,余跃,唐宁,吴伟杰,李进富,从飞云,张昊,王寅华,郝国帅. 中开多级离心泵效率优化计算方法[J]. 浙江大学学报(工学版), 2019, 53(5): 988-996.
[4] 牟介刚,刘剑,谷云庆,代东顺,郑水华,吴登昊. 仿生蜗壳离心泵内部非定常流动特性分析[J]. 浙江大学学报(工学版), 2016, 50(5): 927-933.
[5] 蒋庆磊, 邢桂坤, 吴大转, 王乐勤. 离心泵内小间隙环流瞬态流体力计算[J]. J4, 2012, 46(5): 929-934.
[6] 吴大转, 许斌杰, 武鹏, 李志峰, 王乐勤. 多级离心泵内部间隙流动与泄漏损失[J]. J4, 2011, 45(8): 1393-1398.
[7] 平仕良 吴大转 王乐勤. 离心式水泵快速开启过程的瞬态效应分析[J]. J4, 2007, 41(5): 814-817.
[8] 陈柏 顾大强 蒋素荣 黄前春. 不同介质中螺旋机器人轴向力实验研究[J]. J4, 2006, 40(12): 2122-2125.
[9] 吴大转 王乐勤 胡征宇. 离心泵快速启动过程瞬态水力特性的数值模拟[J]. J4, 2005, 39(9): 1427-1430.
[10] 胡征宇 吴大转 王乐勤. 离心泵快速启动过程的瞬态水力特性——外特性研究[J]. J4, 2005, 39(5): 605-608.