Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (7): 1302-1309    DOI: 10.3785/j.issn.1008-973X.2022.07.005
土木工程、水利工程、交通工程     
内掺PDMS对地聚合物性能和微观结构的影响
阮圣倩1(),王铁龙2,*(),陈士堃1,刘毅3,闫东明1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 北京特种工程设计研究院,北京 100000
3. 浙江大学 材料科学与工程学院,浙江 杭州 310058
Effect of PDMS incorporation on property and microstructure of geopolymer
Sheng-qian RUAN1(),Tie-long WANG2,*(),Shi-kun CHEN1,Yi LIU3,Dong-ming YAN1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Beijing Special Engineering Design and Research Institute, Beijing 100000, China
3. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1424 KB)   HTML
摘要:

为了表征内掺聚二甲基硅氧烷(PDMS)对偏高岭土基地聚合物的改性效果,提高防水和耐腐性能,制备不同配比的复合材料. 采用接触角、热重和强度试验,表征材料的润湿性、保水性和力学性能. 采用压汞法(MIP)、扫描电镜(SEM)、背散射(BSE)和能谱测试(EDS),分析孔隙分布、微观结构和化学组成. 结果表明,PDMS能够对地聚合物凝胶进行广泛且均匀的疏水化改性,当PDMS与MK的质量比(mPDMS/mMK)为0.025时,接触角约为130°. 添加硅烷偶联剂和干燥处理,均能够提高疏水性. 适当质量比的PDMS(0.01≤mPDMS/mMK≤0.025)能够提高地聚合物的强度和韧性,因为复合材料的凝胶结构更致密. PDMS增强了低温状态下地聚合物对水分的束缚力,对减小干缩具有重要意义.

关键词: 地聚合物聚二甲基硅氧烷疏水改性润湿性力学性能    
Abstract:

Composite materials with different proportions were fabricated in order to characterize the modification effect of polydimethylsiloxane (PDMS) in metakaolin-based geopolymers and improve their waterproof and corrosion resistance. Contact angle measurement, thermogravimetric and strength tests were performed to characterize the wettability, water retention and mechanical strength of the material. Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), backscattering (BSE), and energy dispersive (EDS) tests were performed to analyze the pore distribution, microstructure, and chemical composition. Results show that PDMS can hydrophobically modify the geopolymer gel extensively and uniformly, and the contact angle is about 130° when the mass ratio of PDMS to MK (mPDMS/mMK) is 0.025. Adding the silane coupling agent and drying treatment can improve hydrophobicity. A proper mass ratio of PDMS (0.01≤mPDMS/mMK≤0.025) can improve the strength and toughness of the geopolymer, because the gel structure of the composite is denser. PDMS enhances the binding force of geopolymers to moisture at low temperature, which is significant for reducing drying shrinkage.

Key words: geopolymer    polydimethylsiloxane    hydrophobic modification    wettability    mechanical property
收稿日期: 2021-07-21 出版日期: 2022-07-26
CLC:  TU 523  
基金资助: 国家自然科学基金资助项目(51978608,51879230)
通讯作者: 王铁龙     E-mail: shengqian_ruan@zju.edu.cn;wang-tielong@163.com
作者简介: 阮圣倩(1996—),女,博士生,从事地聚合物的研究. orcid.org/ 0000-0002-0499-5143. E-mail: shengqian_ruan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
阮圣倩
王铁龙
陈士堃
刘毅
闫东明

引用本文:

阮圣倩,王铁龙,陈士堃,刘毅,闫东明. 内掺PDMS对地聚合物性能和微观结构的影响[J]. 浙江大学学报(工学版), 2022, 56(7): 1302-1309.

Sheng-qian RUAN,Tie-long WANG,Shi-kun CHEN,Yi LIU,Dong-ming YAN. Effect of PDMS incorporation on property and microstructure of geopolymer. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1302-1309.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.005        https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1302

w(Al2O3) w(SiO2) w(TiO2) w(Fe2O3) w(Na2O) w(K2O) w(MgO) w(P2O5) w(CaO)
42.25 54.25 1.87 0.48 0.29 0.15 0.14 0.09 0.07
表 1  地聚合物配合比
mMK mSS mSH mPDMS mSCA mW
400 640 69 0~20 0~2 142
表 2  地聚合物的配合比
样品编号 mPDMS /g mSCA /g mPDMS/mMK mSCA/mPDMS
H0 0 0 0
H1 4 0.16 0.01 0.04
H2.5
(H2.5-0.04)
10 0.40 0.025 0.04
H5 20 0.80 0.05 0.04
H2.5-0 10 0 0.025 0
H2.5-0.02 10 0.2 0.025 0.02
H2.5-0.1 10 1 0.025 0.1
H2.5-0.2 10 2 0.025 0.2
表 3  地聚合物中PDMS和SCA的掺量与质量比
图 1  mSCA/mPDMS与接触角的关系
图 2  不同mPDMS/mMK和RWL样品的接触角图像
图 3  mPDMS/mMK与接触角的关系
图 4  失水率与接触角的关系
图 5  干燥前、后不同mPDMS/mMK样品的疏水机理示意图
图 6  样品的孔隙结构
图 7  H0和H2.5样品的SEM/BSE/EDS测试结果
图 8  DTG和TGA测试的结果
图 9  力学强度的测试结果
1 DUXSON P, FERNÁNDEZ-JIMÉNEZ A, PROVIS J L, et al Geopolymer technology: the current state of the art[J]. Journal of Materials Science, 2007, 42 (9): 2917- 2933
doi: 10.1007/s10853-006-0637-z
2 RANJBAR N, KUENZEL C, SPANGENBERG J, et al Hardening evolution of geopolymers from setting to equilibrium: a review[J]. Cement and Concrete Composites, 2020, 114: 103729
doi: 10.1016/j.cemconcomp.2020.103729
3 BAJPAI R, CHOUDHARY K, SRIVASTAVA A, et al Environmental impact assessment of fly ash and silica fume based geopolymer concrete[J]. Journal of Cleaner Production, 2020, 254: 120147
doi: 10.1016/j.jclepro.2020.120147
4 AMRAN Y H M, ALYOUSEF R, ALABDULJABBAR H, et al Clean production and properties of geopolymer concrete; a review[J]. Journal of Cleaner Production, 2020, 251: 119679
doi: 10.1016/j.jclepro.2019.119679
5 HALL C Water sorptivity of mortars and concretes: a review[J]. Magazine of Concrete Research, 1989, 41 (147): 51- 61
doi: 10.1680/macr.1989.41.147.51
6 ZHANG L W, KAI M F, CHEN X H Si-doped graphene in geopolymer: its interfacial chemical bonding, structure evolution and ultrastrong reinforcing ability[J]. Cement and Concrete Composites, 2020, 109: 103522
doi: 10.1016/j.cemconcomp.2020.103522
7 PARBHOO B, NAGY O Molecular dynamics in hydrogen bond forming environments. the role of hydrophilic-hydrophobic interactions in pyridine-water mixtures[J]. Journal of Molecular Structure, 1988, 177: 393- 399
doi: 10.1016/0022-2860(88)80104-2
8 YANG M, PAUDEL S R, ASA E Comparison of pore structure in alkali activated fly ash geopolymer and ordinary concrete due to alkali-silica reaction using micro-computed tomography[J]. Construction and Building Materials, 2020, 236: 117524
doi: 10.1016/j.conbuildmat.2019.117524
9 NOUSHINI A, CASTEL A, ALDRED J, et al Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete[J]. Cement and Concrete Composites, 2020, 105: 103290
doi: 10.1016/j.cemconcomp.2019.04.006
10 FU C, YE H, ZHU K, et al Alkali cation effects on chloride binding of alkali-activated fly ash and metakaolin geopolymers[J]. Cement and Concrete Composites, 2020, 114: 103721
doi: 10.1016/j.cemconcomp.2020.103721
11 ARABZADEH A, CEYLAN H, KIM S, et al Superhydrophobic coatings on Portland cement concrete surfaces[J]. Construction and Building Materials, 2017, 141: 393- 401
doi: 10.1016/j.conbuildmat.2017.03.012
12 WANG F, LEI S, OU J, et al Superhydrophobic calcium aluminate cement with super mechanical stability[J]. Industrial and Engineering Chemistry Research, 2019, 58 (24): 10373- 10382
doi: 10.1021/acs.iecr.9b01188
13 SONG J, ZHAO D, HAN Z, et al Super-robust superhydrophobic concrete[J]. Journal of Materials Chemistry A, 2017, 5 (28): 14542- 14550
doi: 10.1039/C7TA03526H
14 喻建伟, 张朝阳, 孔祥明, 等 内掺硅烷乳液憎水剂对混凝土性能的影响[J]. 硅酸盐学报, 2021, 49 (2): 1- 9
YU Jian-wei, ZHANG Chao-yang, KONG Xiang-ming, et al Effect of silane emulsion water-repellent agent on concrete properties[J]. Journal of the Chinese Ceramic Society, 2021, 49 (2): 1- 9
15 CHEN Y, WANG R, WANG H, et al Study on PVA-siloxane mixed emulsion coatings for hydrophobic cement mortar[J]. Progress in Organic Coatings, 2020, 147: 105775
doi: 10.1016/j.porgcoat.2020.105775
16 YANG C, WANG F, LI W, et al Anti-icing properties of superhydrophobic ZnO/PDMS composite coating[J]. Applied Physics A, 2016, 122 (1): 1- 10
doi: 10.1007/s00339-015-9525-1
17 WANG F, LEI S, OU J, et al Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar[J]. Applied Surface Science, 2020, 507: 145016
doi: 10.1016/j.apsusc.2019.145016
18 LI R, HOU P, XIE N, et al Design of SiO2/PMHS hybrid nanocomposite for surface treatment of cement-based materials [J]. Cement and Concrete Composites, 2018, 87: 89- 97
doi: 10.1016/j.cemconcomp.2017.12.008
19 WANG F, XIE T, LEI S, et al Preparation and properties of foundry dust/Portland cement based composites and superhydrophobic coatings[J]. Construction and Building Materials, 2020, 246: 118466
doi: 10.1016/j.conbuildmat.2020.118466
20 SONG J, LI Y, XU W, et al Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion[J]. Journal of Colloid and Interface Science, 2019, 541: 86- 92
doi: 10.1016/j.jcis.2019.01.014
21 ZHANG P, ZHENG Y, WANG K, et al A review on properties of fresh and hardened geopolymer mortar[J]. Composites Part B:Engineering, 2018, 152: 79- 95
doi: 10.1016/j.compositesb.2018.06.031
22 XIE Y, HILL C A S, XIAO Z, et al Silane coupling agents used for natural fiber/polymer composites: a review[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41 (7): 806- 819
doi: 10.1016/j.compositesa.2010.03.005
23 CHANDLER D Hydrophobicity: two faces of water[J]. Nature, 2002, 417 (6888): 491
doi: 10.1038/417491a
24 ANOOP V, SANKARAIAH S, MARY N L Development of an optically transparent polysilsesquioxane/PDMS addition cured nanocomposite adhesive for electronic applications[J]. New Journal of Chemistry, 2019, 43 (41): 16322- 16330
doi: 10.1039/C9NJ04092G
25 江雷 从自然到仿生的超疏水纳米界面材料[J]. 科技导报, 2005, 23 (2): 4- 8
JIANG Lei Super-hydrophobic nano-interface materials from natural to bionic[J]. Science and Technology Review, 2005, 23 (2): 4- 8
doi: 10.3321/j.issn:1000-7857.2005.02.002
26 刘贵昌, 苏本泽, 王立达, 等 混凝土表面硅烷改性后的防腐蚀性能[J]. 腐蚀与防护, 2012, 33 (12): 1087- 1090
LIU Gui-chang, SU Ben-ze, WANG Li-da, et al Anti-corrosion performance of concrete surface modified by silane[J]. Corrosion and Protection, 2012, 33 (12): 1087- 1090
27 NAMOULNIARA K, MAHIEUX P, LUX J, et al Efficiency of water repellent surface treatment: experiments on low performance concrete and numerical investigation with pore network model[J]. Construction and Building Materials, 2019, 227: 116638
doi: 10.1016/j.conbuildmat.2019.08.019
28 TITTARELLI F, MORICONI G Comparison between surface and bulk hydrophobic treatment against corrosion of galvanized reinforcing steel in concrete[J]. Cement and Concrete Research, 2011, 41 (6): 609- 614
doi: 10.1016/j.cemconres.2011.03.011
29 BOSE S, SAHA S K Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique[J]. Chemistry of Materials, 2003, 15 (23): 4464- 4469
doi: 10.1021/cm0303437
30 BENAVENTE D, LOCK P, ÁNGELES GARCÍA DEL CURA M, et al Predicting the capillary imbibition of porous rocks from microstructure[J]. Transport in Porous Media, 2002, 49 (1): 59- 76
doi: 10.1023/A:1016047122877
31 POUHET R, CYR M Carbonation in the pore solution of metakaolin-based geopolymer[J]. Cement and Concrete Research, 2016, 88: 227- 235
doi: 10.1016/j.cemconres.2016.05.008
32 ALARCON-RUIZ L, PLATRET G, MASSIEU E, et al The use of thermal analysis in assessing the effect of temperature on a cement paste[J]. Cement and Concrete Research, 2005, 35 (3): 609- 613
doi: 10.1016/j.cemconres.2004.06.015
33 NOCHAIYA T, WONGKEO W, PIMRAKSA K, et al Microstructural, physical, and thermal analyses of Portland cement-fly ash-calcium hydroxide blended pastes[J]. Journal of Thermal Analysis and Calorimetry, 2010, 100 (1): 101- 108
doi: 10.1007/s10973-009-0491-8
34 ISMAIL I, BERNAL S A, PROVIS J L, et al Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125- 135
doi: 10.1016/j.cemconcomp.2013.09.006
35 QU Z, YU Q, JI Y, et al Mitigating shrinkage of alkali activated slag with biofilm[J]. Cement and Concrete Research, 2020, 138: 106234
doi: 10.1016/j.cemconres.2020.106234
36 BARBOSA V F F, MACKENZIE K J D, THAUMATURGO C Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers[J]. International Journal of Inorganic Materials, 2000, 2 (4): 309- 317
doi: 10.1016/S1466-6049(00)00041-6
37 PROVIS J L Geopolymers and other alkali activated materials: why, how, and what?[J]. Materials and Structures, 2014, 47 (1/2): 11- 25
38 ZHU X, YAN D, FANG H, et al Early-stage geopolymerization revealed by 27Al and 29Si nuclear magnetic resonance spectroscopy based on vacuum dehydration [J]. Construction and Building Materials, 2021, 266: 121114
doi: 10.1016/j.conbuildmat.2020.121114
39 RUAN S, CHEN S, ZHU X, et al Matrix wettability and mechanical properties of geopolymer cement-polydimethylsiloxane (PDMS) hybrids[J]. Cement and Concrete Composites, 2021, 124: 104268
doi: 10.1016/j.cemconcomp.2021.104268
[1] 詹志文,张凌新,邓见,邵雪明. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
[2] 孔庆盼,纪献兵,周儒鸿,尤天伢,徐进良. 亲-疏水两层结构表面强化蒸汽冷凝传热[J]. 浙江大学学报(工学版), 2020, 54(5): 1022-1028.
[3] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[4] 范圣刚, 张岁寒, 孟畅. 高温冷却后奥氏体不锈钢力学性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2348-2354.
[5] 韩中合,白亚开,王继选. 冷冻氨脱碳机组流程仿真及其耦合方式优化[J]. 浙江大学学报(工学版), 2016, 50(3): 499-507.
[6] 李强, 金贤玉. 箍筋锈蚀对轴压混凝土短柱承载力的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1929-1938.
[7] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. J4, 2014, 48(2): 221-227.
[8] 姚华,盛德仁,陈坚红,李蔚,洪荣华. 重力热管蒸汽发生器热力学分析[J]. J4, 2012, 46(9): 1678-1684.
[9] 姚华,盛德仁,林张新,宋思远,陈坚红,李蔚. 炼铁伴生能源联合循环系统热力学性能分析[J]. J4, 2011, 45(11): 2008-2013.
[10] 金晗辉, 李清平, 陈丽华, 樊建人, 吕琳. 室内悬浮颗粒物分布及输运特性的实验研究[J]. J4, 2010, 44(9): 1793-1797.
[11] 苏锋, 蒋晔, 蔡永昌. 钢管混凝土梁柱节点受力性能有限元分析[J]. J4, 2010, 44(10): 1876-1882.
[12] 吴鹏, 张学军, 邱利民, 等. 二元冰蓄冷系统中的纳米添加剂成核特性研究[J]. J4, 2009, 43(09): 1668-1671.
[13] 黄明星 叶云岳 方攸同 王建乔 吴钢梁 李林. 磁悬浮试验线运行车辆的结构设计与分析[J]. J4, 2008, 42(5): 805-809.