Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (7): 1294-1301    DOI: 10.3785/j.issn.1008-973X.2022.07.004
计算机技术、信息技术     
基于双电压和倍频技术的低功耗高效率发射机
崔梦倩1(),宗培胜2,魏国1,王科平1,*()
1. 天津大学 微电子学院,天津 300072
2. 东南大学 信息科学与工程学院,江苏 南京 211189
Low-power and high-efficiency transmitter based on dual-supply voltage and frequency multiplication technique
Meng-qian CUI1(),Pei-sheng ZONG2,Guo WEI1,Ke-ping WANG1,*()
1. School of Microelectronic, Tianjin University, Tianjin 300072, China
2. School of Information Science and Engineering, Southeast University, Nanjing 211189, China
 全文: PDF(3734 KB)   HTML
摘要:

为了克服电池容量的局限性,延长芯片的待机时间,针对传统发射机的高功耗、低效率问题,提出新型发射机架构. 采用2级注入锁定环形振荡器提供多相信号,电荷泵自举升压电路对该多相信号进行电压提升,实现低电压低功耗设计. 边沿合成器对多相信号进行倍频,使前级电路工作在低频,降低系统功耗. 基于55 nm CMOS工艺,设计433 MHz ISM频段发射机进行验证. 仿真结果表明,发射机的输出功率为?9.7 dBm,环形振荡器和电荷泵自举升压电路工作在0.6 V电源电压下,边沿合成器工作在1.2 V电源电压下,发射机整体功耗为357.04 μW,效率为29.83%,版图面积为70 μm×100 μm. 实验结果证明,所提结构具有功耗低、效率高、面积小和复杂度低的优点.

关键词: 发射机低功耗低电压自举升压边沿合成注入锁定    
Abstract:

A new transmitter architecture was proposed to solve the high power consumption and low efficiency problems of the traditional transmitter in order to overcome the limitation of battery capacity and prolong the standby time of the chip. A two-stage ring oscillator based on injection locking technique was used to provide multiphase signal. The self-boosted charge pump circuit boosts the voltage of the multi-phase signal in order to achieve a low-voltage and low-power design. The edge combiner was used to multiply the frequency of the multiphase signal, which ensured that the pre-stage circuit can work at low frequency with low power consumption. The 433 MHz ISM transmitter was designed in a 55 nm CMOS technique for verification. The simulation results show that the output power is ?9.7 dBm. The ring oscillator and charge pump can work at a 0.6 V supply, and the edge combiner works under 1.2 V supply. The whole transmitter consumes 357.04 μW, the efficiency is 29.83%, and the layout occupies an area of 70 μm×100 μm. The simulation results show that the proposed structure has the advantages of low power consumption, high efficiency, small area and low complexity.

Key words: transmitter    low power consumption    low voltage    self-boosted voltage    edge combining    injection-locking
收稿日期: 2021-06-29 出版日期: 2022-07-26
CLC:  TN 432  
基金资助: 国家自然科学基金资助项目(61774035);江苏省自然科学基金资助项目(BK20191260)
通讯作者: 王科平     E-mail: cmq_15028576218@sina.com;kpwang@tju.edu.cn
作者简介: 崔梦倩(1996—),女,硕士生,从事射频模拟集成电路的研究. orcid.org/0000-0001-6974-2545. E-mail: cmq_15028576218@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
崔梦倩
宗培胜
魏国
王科平

引用本文:

崔梦倩,宗培胜,魏国,王科平. 基于双电压和倍频技术的低功耗高效率发射机[J]. 浙江大学学报(工学版), 2022, 56(7): 1294-1301.

Meng-qian CUI,Pei-sheng ZONG,Guo WEI,Ke-ping WANG. Low-power and high-efficiency transmitter based on dual-supply voltage and frequency multiplication technique. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1294-1301.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.004        https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1294

图 1  发射机架构
图 2  低功耗、高效率的发射机架构
图 3  注入锁定环形振荡器
图 4  环形振荡器的输出波形
图 5  相位噪声性能
图 6  传统电荷泵的结构
图 7  自举升压电荷泵电路
图 8  自举升压电荷泵的波形
图 9  升压时MP3的状态
图 10  边沿合成电路
图 11  发射机的整体版图
图 12  注入输出波形图
图 13  输出波形的频谱图
图 14  启动波形图
图 15  功耗分布图
方法 工艺库 f/MHz 系统架构 S/mm2 VDD/V 调制方式 P/dBm Pdis/μW η/%
文献[5]方法 0.13 μm 400 延迟锁相环+边沿合成 2.5 1 FSK ?16 400 6.28
文献[8]方法 0.13 μm 400 注入锁定环形振荡器+
边沿合成
0.04 1 FSK ?17 90 22
文献[9]方法 0.13 μm 915 模拟锁相环+功率放大器 0.29 1.2 FSK/OOK ?18.6 367/314 3.76/4.40
文献[11]方法 65 nm 915 注入锁定环形振荡器+
功率放大器
0.038 0.8 8PSK/OPSK ?15 938 3.37
文献[12]方法 0.18 μm 315 谐波注入锁定+电容耦合倍频 0.455 7 0.8+0.2 OOK ?21.3 145 5.11
文献[13]方法 0.18 μm 432 双注入锁定环形振荡器+边沿合成 NA 1 16?QAM/MSK ?15 468 5.37
文献[14]方法 0.18 μm 400 双环形振荡器+边沿合成 0.06 0.8+0.2 BPSK ?15 330 9.58
文献[23]方法 65 nm 430/915 注入锁定环形振荡器+
边沿合成
1.3 0.5 16?QAM/FSK ?10/?8.1 NA 15.9/23.7
文献[24]方法 0.18 μm 915 谐波注入锁定环形振荡器+边沿合成 0.041 3 NA OOK ?14 200.9 19.82
文献[25]方法 22 nm 400 无源多相滤波器+
边沿合成
0.03 0.4+0.2 BPSK ?17.5 67 27
本文方法 55 nm 433 注入锁定环形振荡器+
边沿合成
0.007 0.6+1.2 FSK ?9.7 357 29.83
表 1  低功耗发射机的主要性能对比
图 16  倍频输出的相位噪声性能
1 LEE M C, KARIMI-BIDHENDI A, MALEKZADEH-ARASTEH O, et al. A CMOS inductorless MedRadio OOK transceiver with a 42μW event-driven supply-modulated RX and a 14% efficiency TX for medical implants [C]// 2018 IEEE Custom Integrated Circuits Conference. San Diego: IEEE, 2018: 1-4.
2 YUN S J, LEE J, KANG J, et al. A low power fully integrated RF transceiver for medical implant communication [C]// 2018 IEEE International Symposium on Circuits and Systems. Florence: IEEE, 2018: 1-4.
3 WANG K P, QIU L, KOO J, et al Design of 1.8-mW PLL-free 2.4-GHz receiver utilizing temperature-compensated FBAR resonator[J]. IEEE Journal of Solid-State Circuits, 2018, 53 (6): 1628- 1639
doi: 10.1109/JSSC.2018.2801829
4 WANG K P, OTIS B, WANG Z G A 580-μW 2.4-GHz ZigBee receiver front end with transformer coupling technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28 (2): 174- 176
doi: 10.1109/LMWC.2017.2787064
5 RAI S, HOLLEMAN J, PANDEY J N, et al. A 500µW neural tag with 2µVrms AFE and frequency-multiplying MICS/ISM FSK transmitter [C]// 2009 IEEE International Solid-State Circuits Conference: Digest of Technical Papers. San Francisco: IEEE, 2009: 212-213.
6 王曾祺. WSN低功耗射频接收关键技术研究与芯片设计[D]. 南京: 东南大学, 2017.
WANG Zeng-qi. Low power RF receiver key technologies research and chip design for wireless sensor network applications [D]. Nanjing: Southeast University, 2017.
7 周于浩. 基于注入锁定和倍频的低功耗发射机芯片设计[D]. 南京: 东南大学, 2019.
ZHOU Yu-hao. Design of a low-power transmitter based on injection-locking and frequency multiplication [D]. Nanjing: Southeast University, 2019.
8 PANDEY J, OTIS B P A sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication[J]. IEEE Journal of Solid-State Circuits, 2011, 46 (5): 1049- 1058
doi: 10.1109/JSSC.2011.2118030
9 JAHAN M S, LANGFORD J, HOLLEMAN J. A low-power FSK/OOK transmitter for 915 MHz ISM band [C]// 2015 IEEE Radio Frequency Integrated Circuits Symposium. Phoenix: IEEE, 2015: 163-166.
10 DIAO S X, ZHENG Y J, GAO Y, et al A 50-Mb/s CMOS QPSK/O-QPSK transmitter employing injection locking for direct modulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60 (1): 120- 130
doi: 10.1109/TMTT.2011.2174377
11 IZAD M M, HENG C H. A 17pJ/bit 915MHz 8PSK/O-QPSK transmitter for high data rate biomedical applications [C]// Proceedings of the IEEE 2012 Custom Integrated Circuits Conference. San Jose: IEEE, 2012: 1-4.
12 DAU N, CHEN Y T, LIAO Y T. A 145μW 315MHz harmonically injection-locked RF transmitter with two-step frequency multiplication techniques [C]// 2017 IEEE MTT-S International Microwave Symposium. Honololu: IEEE, 2017: 1781-1783.
13 GUO Y G, MAI S P, WENG Z Y, et al. A 9.4 pJ/bit 432 MHz 16-QAM/MSK transmitter based on edge-combining power amplifier [C]// 2017 IEEE International Symposium on Circuits and Systems. Baltimore: IEEE, 2017: 1-4.
14 TSAI Y L, LIN C Y, WANG B C, et al A 330-μW 400-MHz BPSK transmitter in 0.18-μm CMOS for biomedical applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63 (5): 448- 452
doi: 10.1109/TCSII.2015.2505080
15 ZHOU Y S, YUAN F A study of the lock range of injection-locked CMOS active-inductor oscillators using a linear control system approach[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58 (10): 627- 631
doi: 10.1109/TCSII.2011.2164154
16 KER M D, CHEN S L, TSAI C S Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes[J]. IEEE Journal of Solid-State Circuits, 2006, 45 (5): 1100- 1107
17 TANZAWA T, TANAKA T A dynamic analysis of the Dickson charge pump circuit[J]. IEEE Journal of Solid-State Circuits, 1997, 32 (8): 1231- 1240
doi: 10.1109/4.604079
18 DICKSON J F On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique[J]. IEEE Journal of Solid-State Circuits, 1976, 11 (3): 374- 378
doi: 10.1109/JSSC.1976.1050739
19 ZHOU Y X, WANG Z H, WANG K P. High-efficiency charge pumps with no reversion loss by utilizing gate voltage boosting technique [C]// 2020 IEEE International Symposium on Circuits and Systems. Seville: IEEE, 2020: 1-5.
20 JIANG T Q, YIN J, MAK P I, et al A 0.5-V 0.4-to-1.6-GHz 8-phase bootstrap ring-VCO using Inherent non-overlapping clocks achieving a 162.2-dBc/Hz FoM[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66 (2): 157- 161
doi: 10.1109/TCSII.2018.2842185
21 CHEN X, BREIHOLZ J, YAHYA F B, et al Analysis and design of an ultra-low-power bluetooth low-energy transmitter with ring oscillator-based ADPLL and 4× frequency edge combiner[J]. IEEE Journal of Solid-State Circuits, 2019, 54 (5): 1339- 1350
doi: 10.1109/JSSC.2019.2896404
22 CHUANG C N, LIU S L A 3–8 GHz delay-locked loop with cycle jitter calibration[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55 (11): 1094- 1098
doi: 10.1109/TCSII.2008.2002561
23 WENG Z Y, JIANG H J, GUO Y S, et al. A 400MHz/900MHz dual-band ultra-low-power digital transmitter for biomedical applications [C]// 2020 IEEE Radio Frequency Integrated Circuits Symposium. Los Angeles: IEEE, 2020: 331-334.
24 LIN C C, HU H, GUPTA S. A 66.97pJ/bit, 0.0413mm2 self-aligned PLL-calibrated harmonic-injection-locked TX with > 62dBc spur suppression for IoT applications [C]// 2020 IEEE Radio Frequency Integrated Circuits Symposium. Los Angeles: IEEE, 2020: 323-326.
[1] 李林楠,张为,党艳杰,李泰安. 低功耗差分复用波束合成器的设计[J]. 浙江大学学报(工学版), 2021, 55(3): 571-577.
[2] 朱涛涛, 项晓燕, 陈晨, 孟建熠, 严晓浪. 面向宽电压应用的容错时钟门控单元设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1796-1803.
[3] 陈铖颖, 陈黎明, 黄新栋, 张宏怡. 基于共源共栅反相器的极低功耗Sigma-Delta调制器设计[J]. 浙江大学学报(工学版), 2018, 52(6): 1068-1072.
[4] 黄家骏, 腾来, 张朝杰, 王春晖, 朴成勇. 基于模拟退火算法的I/Q不平衡校正[J]. 浙江大学学报(工学版), 2018, 52(11): 2218-2225.
[5] 陈琛, 孙可旭, 冯建宇, 奚剑雄, 何乐年. 超低功耗无片外电容的低压差线性稳压器[J]. 浙江大学学报(工学版), 2017, 51(8): 1669-1675.
[6] 黄正宇, 蒋鑫龙, 刘军发, 陈益强, 谷洋. 基于融合特征的半监督流形约束定位方法[J]. 浙江大学学报(工学版), 2017, 51(4): 655-662.
[7] 周聪聪, 涂春龙, 高云, 王飞翔, 何成, 龚红伟,连平, 叶学松. 腕戴式低功耗无线心率监测装置的研制[J]. 浙江大学学报(工学版), 2015, 49(4): 798-806.
[8] 谭腾飞,马德,黄凯,马琪. 多层图像叠加处理的低功耗自适应流水线设计[J]. 浙江大学学报(工学版), 2015, 49(1): 27-35.
[9] 项晓燕,陈志坚,孟建熠,严晓浪. 基于邻行链接访问的低功耗指令高速缓存[J]. J4, 2013, 47(7): 1213-1217.
[10] 赵津晨,赵梦恋,吴晓波. 低电源电压超低功耗Delta-Sigma调制器[J]. J4, 2013, 47(7): 1225-1231.
[11] 杭国强, 李锦煊, 王国飞. 新型钟控神经元MOS采样/保持电路[J]. J4, 2012, 46(2): 333-337.
[12] 徐鸿明,孟建熠,严晓浪,葛海通. 基于高速缓存资源共享的TLB设计方法[J]. J4, 2011, 45(3): 462-466.
[13] 龚帅帅,吴晓波,孟建熠,丁永林. 基于历史链接关系的指令高速缓存低功耗方法[J]. J4, 2011, 45(3): 467-471.
[14] 朱丽芳,何乐年,叶益迭. PWM/PSM双模式高压异步整流BUCK电路[J]. J4, 2011, 45(1): 185-190.
[15] 徐扬, 沈继忠. 基于门控时钟的低功耗时序电路设计新方法[J]. J4, 2010, 44(9): 1724-1729.