计算机技术、信息技术 |
|
|
|
|
基于双电压和倍频技术的低功耗高效率发射机 |
崔梦倩1( ),宗培胜2,魏国1,王科平1,*( ) |
1. 天津大学 微电子学院,天津 300072 2. 东南大学 信息科学与工程学院,江苏 南京 211189 |
|
Low-power and high-efficiency transmitter based on dual-supply voltage and frequency multiplication technique |
Meng-qian CUI1( ),Pei-sheng ZONG2,Guo WEI1,Ke-ping WANG1,*( ) |
1. School of Microelectronic, Tianjin University, Tianjin 300072, China 2. School of Information Science and Engineering, Southeast University, Nanjing 211189, China |
引用本文:
崔梦倩,宗培胜,魏国,王科平. 基于双电压和倍频技术的低功耗高效率发射机[J]. 浙江大学学报(工学版), 2022, 56(7): 1294-1301.
Meng-qian CUI,Pei-sheng ZONG,Guo WEI,Ke-ping WANG. Low-power and high-efficiency transmitter based on dual-supply voltage and frequency multiplication technique. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1294-1301.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.004
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1294
|
1 |
LEE M C, KARIMI-BIDHENDI A, MALEKZADEH-ARASTEH O, et al. A CMOS inductorless MedRadio OOK transceiver with a 42μW event-driven supply-modulated RX and a 14% efficiency TX for medical implants [C]// 2018 IEEE Custom Integrated Circuits Conference. San Diego: IEEE, 2018: 1-4.
|
2 |
YUN S J, LEE J, KANG J, et al. A low power fully integrated RF transceiver for medical implant communication [C]// 2018 IEEE International Symposium on Circuits and Systems. Florence: IEEE, 2018: 1-4.
|
3 |
WANG K P, QIU L, KOO J, et al Design of 1.8-mW PLL-free 2.4-GHz receiver utilizing temperature-compensated FBAR resonator[J]. IEEE Journal of Solid-State Circuits, 2018, 53 (6): 1628- 1639
doi: 10.1109/JSSC.2018.2801829
|
4 |
WANG K P, OTIS B, WANG Z G A 580-μW 2.4-GHz ZigBee receiver front end with transformer coupling technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28 (2): 174- 176
doi: 10.1109/LMWC.2017.2787064
|
5 |
RAI S, HOLLEMAN J, PANDEY J N, et al. A 500µW neural tag with 2µVrms AFE and frequency-multiplying MICS/ISM FSK transmitter [C]// 2009 IEEE International Solid-State Circuits Conference: Digest of Technical Papers. San Francisco: IEEE, 2009: 212-213.
|
6 |
王曾祺. WSN低功耗射频接收关键技术研究与芯片设计[D]. 南京: 东南大学, 2017. WANG Zeng-qi. Low power RF receiver key technologies research and chip design for wireless sensor network applications [D]. Nanjing: Southeast University, 2017.
|
7 |
周于浩. 基于注入锁定和倍频的低功耗发射机芯片设计[D]. 南京: 东南大学, 2019. ZHOU Yu-hao. Design of a low-power transmitter based on injection-locking and frequency multiplication [D]. Nanjing: Southeast University, 2019.
|
8 |
PANDEY J, OTIS B P A sub-100 μW MICS/ISM band transmitter based on injection-locking and frequency multiplication[J]. IEEE Journal of Solid-State Circuits, 2011, 46 (5): 1049- 1058
doi: 10.1109/JSSC.2011.2118030
|
9 |
JAHAN M S, LANGFORD J, HOLLEMAN J. A low-power FSK/OOK transmitter for 915 MHz ISM band [C]// 2015 IEEE Radio Frequency Integrated Circuits Symposium. Phoenix: IEEE, 2015: 163-166.
|
10 |
DIAO S X, ZHENG Y J, GAO Y, et al A 50-Mb/s CMOS QPSK/O-QPSK transmitter employing injection locking for direct modulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60 (1): 120- 130
doi: 10.1109/TMTT.2011.2174377
|
11 |
IZAD M M, HENG C H. A 17pJ/bit 915MHz 8PSK/O-QPSK transmitter for high data rate biomedical applications [C]// Proceedings of the IEEE 2012 Custom Integrated Circuits Conference. San Jose: IEEE, 2012: 1-4.
|
12 |
DAU N, CHEN Y T, LIAO Y T. A 145μW 315MHz harmonically injection-locked RF transmitter with two-step frequency multiplication techniques [C]// 2017 IEEE MTT-S International Microwave Symposium. Honololu: IEEE, 2017: 1781-1783.
|
13 |
GUO Y G, MAI S P, WENG Z Y, et al. A 9.4 pJ/bit 432 MHz 16-QAM/MSK transmitter based on edge-combining power amplifier [C]// 2017 IEEE International Symposium on Circuits and Systems. Baltimore: IEEE, 2017: 1-4.
|
14 |
TSAI Y L, LIN C Y, WANG B C, et al A 330-μW 400-MHz BPSK transmitter in 0.18-μm CMOS for biomedical applications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63 (5): 448- 452
doi: 10.1109/TCSII.2015.2505080
|
15 |
ZHOU Y S, YUAN F A study of the lock range of injection-locked CMOS active-inductor oscillators using a linear control system approach[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, 58 (10): 627- 631
doi: 10.1109/TCSII.2011.2164154
|
16 |
KER M D, CHEN S L, TSAI C S Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes[J]. IEEE Journal of Solid-State Circuits, 2006, 45 (5): 1100- 1107
|
17 |
TANZAWA T, TANAKA T A dynamic analysis of the Dickson charge pump circuit[J]. IEEE Journal of Solid-State Circuits, 1997, 32 (8): 1231- 1240
doi: 10.1109/4.604079
|
18 |
DICKSON J F On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique[J]. IEEE Journal of Solid-State Circuits, 1976, 11 (3): 374- 378
doi: 10.1109/JSSC.1976.1050739
|
19 |
ZHOU Y X, WANG Z H, WANG K P. High-efficiency charge pumps with no reversion loss by utilizing gate voltage boosting technique [C]// 2020 IEEE International Symposium on Circuits and Systems. Seville: IEEE, 2020: 1-5.
|
20 |
JIANG T Q, YIN J, MAK P I, et al A 0.5-V 0.4-to-1.6-GHz 8-phase bootstrap ring-VCO using Inherent non-overlapping clocks achieving a 162.2-dBc/Hz FoM[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66 (2): 157- 161
doi: 10.1109/TCSII.2018.2842185
|
21 |
CHEN X, BREIHOLZ J, YAHYA F B, et al Analysis and design of an ultra-low-power bluetooth low-energy transmitter with ring oscillator-based ADPLL and 4× frequency edge combiner[J]. IEEE Journal of Solid-State Circuits, 2019, 54 (5): 1339- 1350
doi: 10.1109/JSSC.2019.2896404
|
22 |
CHUANG C N, LIU S L A 3–8 GHz delay-locked loop with cycle jitter calibration[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55 (11): 1094- 1098
doi: 10.1109/TCSII.2008.2002561
|
23 |
WENG Z Y, JIANG H J, GUO Y S, et al. A 400MHz/900MHz dual-band ultra-low-power digital transmitter for biomedical applications [C]// 2020 IEEE Radio Frequency Integrated Circuits Symposium. Los Angeles: IEEE, 2020: 331-334.
|
24 |
LIN C C, HU H, GUPTA S. A 66.97pJ/bit, 0.0413mm2 self-aligned PLL-calibrated harmonic-injection-locked TX with > 62dBc spur suppression for IoT applications [C]// 2020 IEEE Radio Frequency Integrated Circuits Symposium. Los Angeles: IEEE, 2020: 323-326.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|