人机交互与普适计算 |
|
|
|
|
基于融合特征的半监督流形约束定位方法 |
黄正宇, 蒋鑫龙, 刘军发, 陈益强, 谷洋 |
1. 湘潭大学 信息工程学院,湖南 湘潭 411105;
2. 中国科学院 计算技术研究所,北京 100190;
3. 北京市移动计算与新型终端重点实验室,北京 100190;
4. 中国科学院大学,北京 100190 |
|
Fusion feature based semi-supervised manifold localization method |
HUANG Zheng-yu, JIANG Xin-long, LIU Jun-fa, CHEN Yi-qiang, GU Yang |
1. College of Information Engineering, Xiangtan University, Xiangtan 411105, China;
2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
3. Beijing Key Laboratory of Mobile Computing and Pervasive Device, Beijing 100190, China;
4. University of Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
黄正宇, 蒋鑫龙, 刘军发, 陈益强, 谷洋. 基于融合特征的半监督流形约束定位方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.003.
HUANG Zheng-yu, JIANG Xin-long, LIU Jun-fa, CHEN Yi-qiang, GU Yang. Fusion feature based semi-supervised manifold localization method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.003.
|
[1] HONKAVIRTA V, PERL T, ALILYTTY S, et al. A comparative survey of WLAN location fingerprinting methods [C]∥ 6th Workshop on Positioning, Navigation and Communication. Hannover: IEEE, 2009:243-251.
[2] NEWMAN N. Apple ibeacon technology briefing [J]. Journal of Direct, Data and Digital Marketing Practice, 2014, 15(3): 222-225.
[3] CHEN Z Y. Mining individual behavior pattern based on significant locations and spatial trajectories[C]∥ 2012 IEEE International Conference on Pervasive Computing and Communications Workshops. Lugano: IEEE, 2012: 540-541.
[4] CHEN Z Y, WANG S Q, CHEN Y Q, et al. InferLoc: calibration free based location inference for temporal and spatial finegranularity magnitude [C]∥ 2012 IEEE 15th International Conference on Computational Science and Engineering. Lugano: IEEE, 2012: 453-460.
[5] CHEN Z Y, CHEN Y Q, WANG S Q, et al. A supervised learning based semantic location extraction method using mobile phone data [C]∥2012 IEEE International Conference on Computer Science and Automation Engineering. Zhangjiajie: IEEE, 2012: 548-551.
[6] CHEN Z Y, ZHOU J Y, CHEN Y Q, et al. Combing multiple linear regression and manifold regularization for indoor positioning from unique radio signal [C]∥ 2009 Joint Conferences on Pervasive Computing. Taibei: IEEE, 2009: 611-614.
[7] CHEN Z Y, CHEN Y Q, GAO X Y, et al. Unobtrusive sensing incremental social contexts using fuzzy class incremental learning [C]∥ 2015 IEEE International Conference on Data Mining. Atlantic City: IEEE, 2015: 71-80.
[8] CHEN Z Y, CHEN Y Q, HU L S, et al. ContextSense: unobtrusive discovery of incremental social context using dynamic bluetooth data [C]∥Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Seattle: ACM, 2014:23-26.
[9] CHEN Z Y, CHEN Y Q, WANG S Q, et al. Inferring social contextual behavior from bluetooth traces [C]∥Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication. Zurich: ACM, 2013: 267-270.
[10] TORTEEKA P, CHUNDI X I U. Indoor positioning based on Wi-Fi fingerprint technique using fuzzy knearest neighbor [C]∥ 2014 11th International Bhurban Conference on IEEE Applied Sciences and Technology. Islamabad: IEEE, 2014: 461-465.
[11] MA R, GUO Q, HU C, et al. An improved WiFi indoor positioning algorithm by weighted fusion [J]. Sensors, 2015, 15(9): 21824-21843.
[12] ZHU J Y, LUO H Y, CHEN Z L, et al. RSSI based Bluetooth low energy indoor positioning [C]∥ 2014 International Conference on IEEE Indoor Positioning and Indoor Navigation. Busan: IEEE, 2014: 526-533.
[13] FARAGHER R, HARLE R. Location fingerprinting with bluetooth low energy BLEs [J]. IEEE Journal on Selected Area in Communications, 2015, 33(11):2418-2428.
[14] GAO X Y, CHEN Z Y, TANG S, et al. Adaptive weighted imbalance learning with application to abnormal activity recognition [J]. Neurocomputing, 2016, 173: 1927-1935.
[15] GAO X Y, HOI S C H, ZHANG Y D, et al. SOML: sparse online metric learning with application to image retrieval [C]∥AAAI. Quebec City: [s. n.], 2014: 1206-1212.
[16] ZHAO Z T, CHEN Z Y, CHEN Y Q, et al. A class incremental extreme learning machine for activity recognition [J]. Cognitive Computation, 2014, 6(3):423-431.
[17] CHEN Y, CHEN R, PEI L, et al. Knowledge-based error detection and correction method of a multi-sensor multi-network positioning platform for pedestrian indoor navigation [C]∥ 2010 IEEE/ION Position Location and Navigation Symposium. Indian Wells: IEEE, 2010: 873-879.
[18] RADU V, LI J, KRIARA L, et al. Poster: a hybrid approach for indoor mobile phone localization [C]∥ International Conference on Mobile Systems, Applications, and Services. Low Wood Bay: ACM, 2012:527-528.
[19] ZHUANG Y, WANG K, WANG W, et al. A hybrid sensing approach to mobile robot localization in complex indoor environments [J]. International Journal of Robotics and Automation, 2012, 27(2): 198-205.
[20] COLOMBO A, FONTANELLI D, MACII D, et al. Flexible indoor localization and tracking based on a wearable platform and sensor data fusion [J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(4): 864-876.
[21] AYLLON D, SANCHEZHEVIA H, GIL-PITA R, et al. Indoor blind localization of smartphones by means of sensor data fusion [C]∥ Sensors Applications Symposium. Zadar: IEEE, 2015.
[22] 王睿,赵方,彭金华,等.基于WI-FI和蓝牙融合的室内定位算法[J].计算机研究与发展,2011(增2): 2833.WANG Rui, ZHAO Fang, PENG Jin-hua, et al. Combination of WI-FI and bluetooth for indoor localization [J]. Journal of Computer Research and Development, 2011 (supple.2): 28-33.
[23] WANG D L, BROWN G J. Computational auditory scene-analysis: principles, algorithms, and applications [M]. Piscataway: WileyIEEE, 2006.
[24] ORFANIDIS S J. Optimum signal processing: an introduction [M]. London: Macmillan, 1988.
[25] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks [C]∥ Proceedings of 2004 IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2004: 985-990.
[26] RAO C R, MITRA S K. Generalized inverse of matrices and its applications [M]. New York: Wiley, 1971.
[27] SERRE D. Matrices: theory and applications [J]. Mathematics, 2002(32): 218-221.
[28] LIU J, CHEN Y, LIU M, et al. SELM: semi-supervised ELM with application in sparse calibrated location estimation [J]. Neurocomputing, 2011, 74(16):2566-2572.
[29] CHUNG F R K. Spectral graph theory [M]. Washington: American Mathematical Society, 1997, 9(6): 55.
[30] BELKIN M, MATVEEVA I, NIYOGI P. Regularization and semi-supervised learning on large graphs[C]∥International Conference on Computational Learning Theory. Berlin: Springer, 2004: 624-638.
[31] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples [J]. Journal of Machine Learning Research, 2006, 7(1): 2399-2434. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|