Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (4): 664-670    DOI: 10.3785/j.issn.1008-973X.2019.04.007
机械与能源工程     
淬火处理对激光选区熔化成形S136组织与性能的影响
季宪泰1(),文世峰1,*(),魏青松1,周燕1,2,陈志平3
1. 华中科技大学 材料成形及模具技术国家重点实验室,湖北 武汉 430074
2. 中国地质大学(武汉) 工程学院,湖北 武汉 430074
3. 广东科龙模具有限公司,广东 佛山 528303
Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting
Xian-tai JI1(),Shi-feng WEN1,*(),Qing-song WEI1,Yan ZHOU1,2,Zhi-ping CHEN3
1. State Key Laboratory of Materials Processing and Die and Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
3. Guangdong Kelon Mould Limited Company, Foshan 528303, China
 全文: PDF(1114 KB)   HTML
摘要:

为了改善激光选区熔化(SLM)成形S136模具钢的性能,对SLM成形的试样进行淬火处理. 采用X射线衍射(XRD)和扫描电子显微镜(SEM),研究淬火温度对SLM成形S136的微观组织、硬度和耐腐蚀性能的影响. 结果表明:SLM成形的S136试样组织由马氏体和少量残余奥氏体组成,经过980、1 020、1 050和1 100 °C的淬火处理之后,原晶界消溶,组织大部分转变为马氏体;淬火处理后试样的硬度得到改善,最高值达到54.24 HRC,比原始成形试样提高了近10%;淬火处理后试样原晶界消溶,耐腐蚀性元素分布均匀使得耐腐蚀性能得到了极大的提升,与原始成形试样相比,腐蚀失重量减少了近97%. 优化淬火处理工艺后表明:采用1 050 °C保温1 h并油淬的淬火处理条件,可以得到最佳的硬度/耐蚀性能匹配.

关键词: 激光选区熔化模具钢淬火处理微观组织耐腐蚀性能    
Abstract:

The quenching treatment was conducted to S136 mould steel fabricated by selective laser melting (SLM) in order to improve the properties. The effect of quenching treatment on the microstructure, hardness and anti-corrosion properties was analyzed via X-ray diffraction (XRD) and scanning electron microscope (SEM). Results showed that the microstructure of S136 mould steel fabricated by selective laser melting was mainly martensite and retained austenite. The grain boundaries disappeared and dissolved into matrix after quenching treatment at 980 °C, 1 020 °C, 1 050 °C and 1 100 °C, and the microstructure transformed to martensite. The hardness of quenching treatment parts was improved to 54.24 HRC, which was increased by approximately 10% compared with unheated parts. The anti-corrosion properties were greatly enhanced due to the dissolution of grain boundaries and the evenly distribution of anti-corrosion elements. The mass loss of quenching treatment parts decreases to 97% of the as-produced parts. Results indicate that the best match of hardness and anti-corrosion properties can be obtained when quenching at 1 050 °C for 1 h.

Key words: selective laser melting    mould steel    quenching treatment    microstructure    corrosion resistance
收稿日期: 2018-03-19 出版日期: 2019-03-28
CLC:  TG 156  
通讯作者: 文世峰     E-mail: jixiantai@163.com;royal_wen@163.com
作者简介: 季宪泰(1992—),男,硕士生,从事激光增材制造的研究. orcid.org/0000-0002-5728-8127. E-mail: jixiantai@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
季宪泰
文世峰
魏青松
周燕
陈志平

引用本文:

季宪泰,文世峰,魏青松,周燕,陈志平. 淬火处理对激光选区熔化成形S136组织与性能的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 664-670.

Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.007        http://www.zjujournals.com/eng/CN/Y2019/V53/I4/664

w(Si) w(Mn) w(Cr) w(V) w(C) w(O) w(P) w(Fe)
0.96 0.98 13.55 0.4 0.29 0.078 0.01 83.732
表 1  S136模具钢粉末的化学成分
图 1  S136粉末形貌及粒径
图 2  SLM成形原理及成形试样
图 3  SLM成形S136试样不同淬火温度下的XRD图谱
图 4  S136 SLM成形件的微观组织图
图 5  SLM成形S136试样淬火处理后的微观组织及EDS图
图 6  SLM成形S136试样及其淬火处理后的硬度
图 7  SLM成形S136试样及淬火处理后试样在质量分数为6%的FeCl3腐蚀液中的腐蚀失重
图 8  SLM成形S136与980 °C淬火处理后试样的腐蚀失重趋势对比
图 9  SLM成形S136在1 020 °C淬火处理后试样的腐蚀产物
1 ZHANG D, LIU J, CHEN Y, et al Investigation on S-136 steel surface planarization by chemical mechanical polishing[J]. Microelectronic Engineering, 2015, 134 (20): 47- 53
2 ASMELASH M, AZHARI M Examination of machining parameters on the surface roughness of STAVAX ESR material using electro discharge machining[J]. Advanced Materials Research, 2016, 1133: 339- 343
doi: 10.4028/www.scientific.net/AMR.1133
3 MEBRAHITOM A, RIZUAN D, AZMIR M, et al Effect of high-speed milling tool path strategies on the surface roughness of STAVAX ESR mold insert machining[J]. IOP Conference Series: Materials Science and Engineering, 2016, 114 (1): 012006
4 XU H L, WEN G H, SUN W, et al Thermal behaviour of moulds with different water channels and their influence on quality in continuous casting of beam blanks[J]. Ironmaking and Steelmaking, 2010, 37 (5): 380- 386
doi: 10.1179/030192310X12646889255780
5 中国模具工业协会 模具行业" 十二五”发展规划[J]. 模具工业, 2011, 37 (1): 1- 8
China Die and Mould Industry Association 12th five-year plant of die and mould industry[J]. Die and Mould Manufacture, 2011, 37 (1): 1- 8
doi: 10.3969/j.issn.1001-2168.2011.01.001
6 张祥林, 曹传亮, 查想, 等 高端精冲模具的制造探讨[J]. 塑性工程学报, 2013, 20 (1): 68- 71
ZHANG Xiang-lin, CAO Chuan-liang, ZHA Xiang, et al Study of manufacturing of high-end fineblanking tools[J]. Journal of Plasticity Engineering, 2013, 20 (1): 68- 71
doi: 10.3969/j.issn.1007-2012.2013.01.014
7 CONNER B P, MANOGHARAN G P, MARTOF A N, et al Making sense of 3-D printing: creating a map of additive manufacturing products and services[J]. Additive Manufacturing, 2014, s1-4: 64- 76
8 PONCHE R, KERBRAT O, MOGNOL P, et al A novel methodology of design for additive manufacturing applied to additive laser manufacturing process[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30 (4): 389- 398
doi: 10.1016/j.rcim.2013.12.001
9 SANTOS L M S, FERREIRA J A M, JESUS J S, et al Fatigue behavior of selective laser melting steel components[J]. Theoretical and Applied Fracture Mechanics, 2016, 85: 9- 15
doi: 10.1016/j.tafmec.2016.08.011
10 SONG B, XIAO Z, SHUAI L, et al Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review[J]. Frontiers of Mechanical Engineering, 2015, 10 (2): 111- 125
doi: 10.1007/s11465-015-0341-2
11 HAN J C, XIAO S L, TIAN J, et al Microstructure characterization and tensile properties of a Ni-containing TiAl-based alloy with heat treatment[J]. Rare Metals, 2016, 35 (1): 26- 34
doi: 10.1007/s12598-015-0626-y
12 CHEN H Y, GU D D, DAI D H, et al Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts[J]. Materials Science and Engineering A, 2017, 682 (13): 279- 289
13 TUCHO W M, CUVILLIER P, SJOLYST-KVERNELAND A, et al Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment[J]. Materials Science and Engineering A, 2017, 689 (24): 220- 232
14 丁利, 李怀学, 王玉岱, 等 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响[J]. 中国激光, 2015, 42 (4): 179- 185
DING Li, LI Huai-xue, WANG Yu-dai, et al Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42 (4): 179- 185
15 林武, 张希旺, 赵延阔, 等 Q345钢奥氏体连续冷却转变曲线(CCT图)[J]. 材料科学与工艺, 2009, 17 (2): 247- 250
LIN Wu, ZHANG Xi-wang, ZHAO Yan-kuo, et al Continuous cooling transformation curve of undercooling austenite about Q345 steel (CCT diagram)[J]. Materials Science and Technology, 2009, 17 (2): 247- 250
16 XIA M, GU D, YU G, et al Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture, 2017, 116: 96- 106
17 鲁思渊. 热处理工艺对Cr13型塑料模具钢组织与耐蚀性影响研究[D]. 北京: 清华大学, 2015.
LU Si-yuan. Effect of heat treatments on the microstructure and corrosion resistance of Cr13-type plastic mold steel [D]. Beijing: Tsinghua University, 2015.
18 刘嘉, 张锁梅, 赵爱民, 等 热处理对高铬铸铁组织和硬度的影响[J]. 热加工工艺, 2010, 39 (9): 28- 30
LIU Jia, ZHANG Suo-mei, ZHAO Ai-min, et al Effects of heat treatment on microstructure and properties of high chromium cast iron[J]. Hot Working Technology, 2010, 39 (9): 28- 30
doi: 10.3969/j.issn.1001-3814.2010.09.009
19 HU X, LI L, WU X, et al Coarsening behavior of M 23 C 6, carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J]. International Journal of Fatigue, 2006, 28 (3): 175- 182
doi: 10.1016/j.ijfatigue.2005.06.042
20 RAY A K, MISHRA K K, DAS G, et al Life of rolls in a cold rolling mill in a steel plant-operation versus manufacture[J]. Engineering Failure Analysis, 2000, 7 (1): 55- 67
doi: 10.1016/S1350-6307(99)00004-7
21 芮家群. 15Cr超级马氏体不锈钢的腐蚀及钝化行为的研究[D]. 昆明: 昆明理工大学, 2013.
RUI Jia-qun. Corrosion and passivation properties of 15Cr supermartensitic stainless steel [D]. Kunming: Kunming University of Science and Technology, 2013.
22 LU S Y, YAO K F, CHEN Y B, et al Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel[J]. Journal of Applied Electrochemistry, 2015, 45 (4): 375- 383
doi: 10.1007/s10800-015-0796-1
23 LU S Y, YAO K F, CHEN Y B, et al The effect of tempering temperature on the microstructure and electrochemical properties of a 13 wt.% Cr-type martensitic stainless steel[J]. Electrochimica Acta, 2015, 165: 45- 55
doi: 10.1016/j.electacta.2015.02.038
24 WEN S, SHUAI L, WEI Q, et al Effect of molten pool boundaries on the mechanical properties of selective laser melting parts[J]. Journal of Materials Processing Technology, 2014, 214 (11): 2660- 2667
doi: 10.1016/j.jmatprotec.2014.06.002
25 SUN Y, MOROZ A, ALRBAEY K Sliding wear characteristics and corrosion behaviour of selective laser melted 316l stainless steel[J]. Journal of Materials Engineering and Performance, 2014, 23 (2): 518- 526
doi: 10.1007/s11665-013-0784-8
26 DAI N, ZHANG L C, ZHANG J, et al Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution[J]. Corrosion Science, 2016, 102: 484- 489
doi: 10.1016/j.corsci.2015.10.041
[1] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.