Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 522-529    DOI: 10.3785/j.issn.1008-973X.2023.03.010
土木工程     
具有特殊功能的钢结构节点的力学性能
李晓东(),弓耀云,马顺利,陈恩亮,张振永
兰州理工大学 土木工程学院,甘肃 兰州 730050
Mechanical properties of steel structure joints with special functions
Xiao-dong LI(),Yao-yun GONG,Shun-li MA,En-liang CHEN,Zhen-yong ZHANG
College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
 全文: PDF(4376 KB)   HTML
摘要:

为了使钢框架结构在倒塌时具有方向性并延缓倒塌时间,提出具有方向性、耗能性、延时性的新型钢框架节点. 对新型节点试件进行拟静力试验,研究节点的破坏形态、滞回性能、刚度退化曲线、骨架曲线及延性性能,探讨材料屈服强度、摩擦系数和削弱深度对新型节点的影响. 运用有限元分析软件Abaqus对新型节点的循环往复位移加载过程进行准确模拟,进一步分析节点的力学性能,预测构件被首先破坏的部位. 结果表明:新型节点试件的破坏形态基本一致,均为低屈服点翼缘板先发生屈服破坏;设置低屈服点翼缘板和在试件表面涂抹摩擦材料可以增加结构的耗能能力,低屈服点翼缘板的屈服强度和摩擦系数越大,耗能能力越好;节点的延性性能随着腹板削弱深度和摩擦系数的增加而增加,屈服点越低,延性越大.

关键词: 钢结构节点方向性耗能性延时性力学性能    
Abstract:

A new type of steel frame joint with directivity, energy dissipation and time delay was proposed in order to make the steel frame structure directional when collapsing and delay the collapse time. Pseudo-static tests were carried out on the new type of joints. The failure modes, hysteretic behavior, stiffness degradation curves, skeleton curves and ductility properties of the joints were studied. The effects of material yield strength, friction coefficient and weakening depth on the new type of joints were discussed. The Abaqus finite element analysis software was used to accurately simulate the cyclic displacement loading process of the new joint, and further analyze the mechanical properties of the joint, and predict the first failure position of the component. Results showed that the failure modes of the new joint specimens were essentially identical. The flange plate with the low yield point was the first to produce a yield failure, the energy dissipation capacity of the structure was increased by selecting the flange plate with the low yield point and smearing friction materials on the surface of the specimen, and the higher the yield strength and friction coefficient of the flange plate with the low yield point, the better would be the energy dissipation capacity. Further, the ductility of the joints increased as the web weakening depth and friction coefficient increased, the lower the yield point, the greater would be the ductility.

Key words: steel structure joint    directivity    energy dissipation    time delay    mechanical properties
收稿日期: 2022-03-05 出版日期: 2023-03-31
CLC:  TU 391  
基金资助: 国家自然科学基金资助项目(51968043)
作者简介: 李晓东(1973—),男,副教授,博士,从事钢结构相关研究. orcid.org/0000-0002-9031-3523. E-mail: xdli@lut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李晓东
弓耀云
马顺利
陈恩亮
张振永

引用本文:

李晓东,弓耀云,马顺利,陈恩亮,张振永. 具有特殊功能的钢结构节点的力学性能[J]. 浙江大学学报(工学版), 2023, 57(3): 522-529.

Xiao-dong LI,Yao-yun GONG,Shun-li MA,En-liang CHEN,Zhen-yong ZHANG. Mechanical properties of steel structure joints with special functions. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 522-529.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.010        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/522

试件编号 低屈服点翼缘板 c/mm ?
T1 LY100 10 0.25
T2 LY160 10 0.25
T3 LY225 10 0.25
T4 LY160 15 0.25
T5 LY160 20 0.25
T6 LY160 10 0.35
T7 LY160 10 0.45
T8 0 0
表 1  钢结构节点试件参数
图 1  新型节点构造详图
图 2  新型节点拟静力试验加载装置示意图
图 3  新型节点拟静力试验现场图
图 4  新型节点加载制度
图 5  钢结构节点试件的破坏形态
图 6  不同钢结构节点试件的水平往复荷载-位移滞回曲线
图 7  不同钢结构节点试件的荷载-位移骨架曲线
图 8  不同钢结构节点试件的等效刚度退化曲线
试件
编号
$ {\varDelta _{\text{f}}} $/mm $ {\varDelta _{\text{y}}} $/mm $ \mu $
正向 负向 正向 负向 正向 负向
T1 59.51 60.52 7.85 6.36 7.58 9.52
T2 60.00 60.02 8.06 6.51 7.44 9.22
T3 60.03 60.00 8.12 6.58 7.39 9.12
T4 59.51 59.52 7.96 6.32 7.48 9.42
T5 59.21 59.82 7.66 6.31 7.73 9.48
T6 61.00 60.99 8.10 6.59 7.53 9.25
T7 60.94 60.91 8.05 6.51 7.57 9.36
T8 40.02 40.01 7.97 7.99 5.02 5.00
表 2  不同钢结构节点试件的延性系数
图 9  节点的有限元模型
图 10  节点的网格划分
1 丁克伟, 刘建华, 马巍, 等 新型装配式半刚性节点抗震性能试验研究[J]. 土木工程学报, 2021, 54 (4): 1- 7
DING Ke-wei, LIU Jian-hua, MA Wei, et al Experimental study on seismic performance of a new type of fabricated semi-rigid beam-to-column connection[J]. China Civil Engineering Journal, 2021, 54 (4): 1- 7
doi: 10.15951/j.tmgcxb.2021.04.001
2 康子恒, 王森林, 杜喜凯, 等 T形钢连接半刚性梁柱节点受力性能研究[J]. 建筑结构学报, 2020, 41 (Suppl.1): 44- 54
KANG Zi-heng, WANG Sen-lin, DU Xi-kai, et al Study on mechanical behavior of semi-rigid beam-column joints with T-section connections[J]. Journal of Building Structures, 2020, 41 (Suppl.1): 44- 54
doi: 10.14006/j.jzjgxb.2020.S1.006
3 谭平, 李洋, 匡珍, 等 装配式隔震结构中隔震节点抗震性能研究[J]. 土木工程学报, 2015, 48 (2): 10- 17
TAN Ping, LI Yang, KUANG Zhen, et al Seismic behavior of isolation connection in assembled seismic isolation structure[J]. China Civil Engineering Journal, 2015, 48 (2): 10- 17
4 夏永强, 肖南 T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1935- 1942
XIA Yong-qiang, XIAO Nan Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1935- 1942
5 韩冬, 布欣, 王新武, 等 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报: 工学版, 2017, 51 (2): 287- 296
HAN Dong, BU Xin, WANG Xin-wu, et al Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (2): 287- 296
6 刘希月, 王元清, 石永久, 等 高强度钢框架梁柱节点低周疲劳断裂性能试验研究[J]. 建筑结构学报, 2018, 39 (2): 28- 36
LIU Xi-yue, WANG Yuan-qing, SHI Yong-yong, et al Experimental study on low-cycle fatigue fracture behavior of high strength steel beam-to-column connection[J]. Journal of Building Structures, 2018, 39 (2): 28- 36
7 TAGAWA H, NAGOYA Y, CHEN X Bolted beam-to-column connection with buckling-restrained round steel bar dampers[J]. Journal of Constructional Steel Research, 2020, 169: 106036
doi: 10.1016/j.jcsr.2020.106036
8 ZHANG A L, WU Y X, JIANG Z Q, et al Seismic behaviour of an earthquake-resilient prefabricated beam-column cross joint[J]. Journal of Zhejiang University-SCIENCE A: Applied Physics and Engineering, 2017, 18 (12): 927- 941
9 LIU X Y, WANG Y Q, XIONG J, et al Damage behavior of steel beam-to-column connections under inelastic cyclic loading[J]. Journal of Zhejiang University-SCIENCE A: Applied Physics and Engineering, 2017, 18 (11): 910- 926
10 杜轲, 滕楠, 燕登, 等 楼板对RC空间框架结构抗连续倒塌性能影响试验研究[J]. 土木工程学报, 2019, 52 (6): 14- 23
DU Ke, TENG Nan, YAN Deng, et al Experimental study on the effect of floor slab on the progressive collapse resistance of RC spatial frame structure[J]. China Civil Engineering Journal, 2019, 52 (6): 14- 23
doi: 10.15951/j.tmgcxb.2019.06.002
11 孟宝, 钟炜辉, 郝际平 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35 (6): 88- 96
MENG Bao, ZHONG Wei-hui, HAO Ji-ping Experimental study on anti-collapse performance for beam-to-column assemblies of steel frame based on joint stiffness[J]. Engineering Mechanics, 2018, 35 (6): 88- 96
12 张惊宙, 李国强, 冯然, 等 考虑边柱失效位置和根数影响的钢框架结构抗倒塌性能研究[J]. 土木工程学报, 2021, 54 (8): 67- 74
ZHANG Jing-zhou, LI Guo-qiang, FENG Ran, et al Collapse resistance of steel framed-structure considering the effects of failure location and number of edge columns[J]. China Civil Engineering Journal, 2021, 54 (8): 67- 74
13 孙昕, 王伟, 王俊杰, 等 组合梁-方钢管柱刚接节点抗连续倒塌性能试验研究[J]. 建筑结构学报, 2020, 41 (Suppl.2): 314- 322
SUN Xin, WANG Wei, WANG Jun-jie, et al Experimental behavior of composite beam-rectangular steel tube joints under progressive collapse scenario[J]. Journal of Building Structures, 2020, 41 (Suppl.2): 314- 322
doi: 10.14006/j.jzjgxb.2020.S2.0034
14 谭政, 钟炜辉, 郑玉辉, 等 多层组合框架子结构抗倒塌性能研究及提升策略[J]. 建筑结构学报, 2022, 43 (6): 128- 141
TAN Zheng, ZHONG Wei-hui, ZHENG Yu-hui, et al Study on anti-collapse performance and improvement strategy of a multi-story composite sub-frame[J]. Journal of Building Structures, 2022, 43 (6): 128- 141
doi: 10.14006/j.jzjgxb.2020.0542
15 CIMAN L, FREDDI F, TONDINI N A retrofit method to mitigate progressive collapse in steel structures[J]. CE/Papers, 2021, 4 (2/4): 1246- 1254
16 KARIMIAN A, ARMAGHANI A, BEHRAVESH A Performance of low-yield strength plates in beam-column connections against progressive collapse[J]. KSCE Journal of Civil Engineering, 2019, 23: 335- 345
doi: 10.1007/s12205-018-0653-y
17 王艳. 钢结构新型延性节点的抗震设计理论及其应用[M]. 北京: 科学出版社, 2012.
18 杨翠如, 钟锡根, 刘大海 抗震墙刚度退化对高层框-墙结构地震内力的影响[J]. 土木工程学报, 1988, 21 (1): 30- 39
YANG Cui-ru, ZHONG Xi-gen, LIU Da-hai Influence on seismic internal forces of highrise frame-wall structures due to stiffness degradation of walls[J]. China Civil Engineering Journal, 1988, 21 (1): 30- 39
doi: 10.15951/j.tmgcxb.1988.01.003
19 许淑芳, 张弢, 索跃宁, 等 钢筋混凝土空心剪力墙刚度退化研究[J]. 西安建筑科技大学学报: 自然科学版, 2007, 39 (5): 605- 609
XU Shu-fang, ZHANG Tao, SUO Yue-ning, et al Study of stiffness degradation on reinforced concrete hollow shear wall[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 2007, 39 (5): 605- 609
[1] 阮圣倩,王铁龙,陈士堃,刘毅,闫东明. 内掺PDMS对地聚合物性能和微观结构的影响[J]. 浙江大学学报(工学版), 2022, 56(7): 1302-1309.
[2] 詹志文,张凌新,邓见,邵雪明. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
[3] 谢旭,黄文彤,冀龙飞,王天佳. 断层破裂过程对减隔震桥梁地震反应的影响[J]. 浙江大学学报(工学版), 2021, 55(12): 2225-2233.
[4] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[5] 庞博,朱仕政,白景峰,吉翔. 基于功率耦合和检波的高强度聚焦超声驱动功率监测技术[J]. 浙江大学学报(工学版), 2019, 53(8): 1630-1636.
[6] 范圣刚, 张岁寒, 孟畅. 高温冷却后奥氏体不锈钢力学性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(12): 2348-2354.
[7] 韩中合,白亚开,王继选. 冷冻氨脱碳机组流程仿真及其耦合方式优化[J]. 浙江大学学报(工学版), 2016, 50(3): 499-507.
[8] 李强, 金贤玉. 箍筋锈蚀对轴压混凝土短柱承载力的影响[J]. 浙江大学学报(工学版), 2015, 49(10): 1929-1938.
[9] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. J4, 2014, 48(2): 221-227.
[10] 陆金钰,唐屹,舒赣平,王恒华. 不等高开缝钢板剪力墙滞回性能分析[J]. 浙江大学学报(工学版), 2014, 48(11): 1968-1975.
[11] 姚华,盛德仁,陈坚红,李蔚,洪荣华. 重力热管蒸汽发生器热力学分析[J]. J4, 2012, 46(9): 1678-1684.
[12] 姚华,盛德仁,林张新,宋思远,陈坚红,李蔚. 炼铁伴生能源联合循环系统热力学性能分析[J]. J4, 2011, 45(11): 2008-2013.
[13] 甘智华,吴英哲,袁园,邱利民,张学军,张小斌,徐旭. 120 Hz单级脉管制冷机理论与实验[J]. J4, 2011, 45(11): 2014-2019.
[14] 金晗辉, 李清平, 陈丽华, 樊建人, 吕琳. 室内悬浮颗粒物分布及输运特性的实验研究[J]. J4, 2010, 44(9): 1793-1797.
[15] 苏锋, 蒋晔, 蔡永昌. 钢管混凝土梁柱节点受力性能有限元分析[J]. J4, 2010, 44(10): 1876-1882.