Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (1): 100-108    DOI: 10.3785/j.issn.1008-973X.2025.01.010
机械工程、能源工程     
考虑线圈温升的电磁开关阀动态响应特性检测
何贤剑1,2,3(),徐恩光1,2,王军3,钟麒1,2,3,*(),李研彪1,2,杨华勇4
1. 浙江工业大学 机械工程学院,浙江 杭州 310023
2. 浙江工业大学 特种装备制造与先进加工技术教育部/浙江省重点实验室,浙江 杭州 310023
3. 浙江海宏液压科技股份有限公司,浙江 临海 317000
4. 浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027
Dynamic response detection for solenoid switching valve considering temperature rising of coil
Xianjian HE1,2,3(),Enguang XU1,2,Jun WANG3,Qi ZHONG1,2,3,*(),Yanbiao LI1,2,Huayong YANG4
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China
3. Zhejiang Haihong Hydraulic Technology Limited Company, Linhai 317000, China
4. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(3734 KB)   HTML
摘要:

针对电磁开关阀内部阀芯运动过程难以被精准检测的问题,提出基于电流多阶导数特性的电磁开关阀动态性能无损识别方法. 考虑电磁铁线圈温升对线圈电阻的影响规律,以线圈电感导数、电流导数和阀芯运动速度建立数学模型. 基于磁化曲线探究电流导数与阀芯运动状态的匹配关系,分析磁导率导数对判断电磁开关阀启闭状态的影响规律. 推导得到开启电流导数中的凸/凹点对应电磁开关阀的临界/完全开启时刻,关闭电流导数中的上/下折点匹配电磁开关阀的临界/完全关闭时刻. 试验结果表明,开启和关闭时间最大检测偏差分别为2.40%和3.08%,单周期总启闭时间最大检测偏差为1.49%.

关键词: 电磁开关阀温升特性动态性能高精度检测电流导数    
Abstract:

A non-destructive identification method for the dynamic performance of the solenoid switching valve (SSV) based on multi-order current derivative characteristics was proposed, aiming at the problem that the moving process of the valve spool inside the SSV was difficult to detect accurately. Considering the effect of the solenoid’s temperature rising on the coil resistance, a mathematical model among the coil inductance derivative, current derivative and spool moving velocity was established. The matching relationship between the current derivative and spool moving state was explored based on the experimental magnetization curve, and the influence of the permeability derivative on the judgment for each switching state of the SSV was analyzed. Theoretical analysis deduced that the convex point and concave point on the opening current derivative curves corresponded to the critical opening moment and fully opened moment of the SSV, and the upper and lower turning points on the closing current derivative curves matched the critical closing moment and fully closed moment of the SSV. Experimental results showed that the maximum measurement deviations of opening time and closing time were 2.40% and 3.08%, respectively, and the maximum measurement deviation of total switching time in a single cycle was 1.49%.

Key words: solenoid switching valve    temperature rising characteristic    dynamic performance    high accuracy detection    current derivative
收稿日期: 2024-01-30 出版日期: 2025-01-18
CLC:  TH 137  
基金资助: 国家自然科学基金资助项目(52005441);中国科协青年人才托举工程项目(2022QNRC001);浙江省自然科学基金资助项目(LQ21E050017);浙江省“领雁”研发攻关计划项目(2022C01122、2022C01132);浙江省属高校基本科研业务费资助项目(RF-A2023007);机械系统与振动国家重点实验室开放基金课题资助项目(MSV202316);浙江工业大学科技成果转化项目(GYY-ZH-2023075).
通讯作者: 钟麒     E-mail: hexianjian985@163.com;zhongqi@zjut.edu.cn
作者简介: 何贤剑(1985—),男,高级工程师,硕士,从事流体传动与控制研究. orcid.org/0009-0009-2410-8538. E-mail:hexianjian985@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
何贤剑
徐恩光
王军
钟麒
李研彪
杨华勇

引用本文:

何贤剑,徐恩光,王军,钟麒,李研彪,杨华勇. 考虑线圈温升的电磁开关阀动态响应特性检测[J]. 浙江大学学报(工学版), 2025, 59(1): 100-108.

Xianjian HE,Enguang XU,Jun WANG,Qi ZHONG,Yanbiao LI,Huayong YANG. Dynamic response detection for solenoid switching valve considering temperature rising of coil. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 100-108.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.01.010        https://www.zjujournals.com/eng/CN/Y2025/V59/I1/100

图 1  电磁开关阀结构
图 2  阀芯受力分析
图 3  电磁开关阀软磁材料的磁化曲线
图 4  软磁材料磁导率及其导数曲线
图 5  电磁开关阀在不同启闭时刻的受力分析
图 6  电磁开关阀动态特性测试平台
仪器名称型号最大采样频率/(kS·s?1
激光位移传感器LK-G15550
线圈电流数据采集卡NI 922750
阀芯位移数据采集卡NI 9205250
表 1  试验台的主要参数
图 7  电磁开关阀温度分布
图 8  电磁线圈的温度曲线
图 9  电磁线圈温升影响下的电阻变化
图 10  电磁开关阀开启阶段的动态特性
图 11  电磁开关阀关闭阶段的动态特性
图 12  电磁开关阀各阶段在不同温升条件下的测量偏差
图 13  电磁开关阀位移检测原理与质量实测
图 14  连续启闭动态特性(50 Hz驱动频率)
图 15  连续启闭动态特性(100 Hz驱动频率)
1 YANG H Y, PAN M Engineering research in fluid power: a review[J]. Journal of Zhejiang University: Science A, 2015, 16 (6): 427- 442
doi: 10.1631/jzus.A1500042
2 SUN D, JIAO Z, SHANG Y, et al High-efficiency aircraft antiskid brake control algorithm via runway condition identification based on an on-off valve array[J]. Chinese Journal of Aeronautics, 2019, 32 (11): 2538- 2556
doi: 10.1016/j.cja.2019.08.020
3 ZHONG Q, BAO H, LI Y, et al Investigation into the independent metering control performance of a twin spools valve with switching technology-controlled pilot[J]. Chinese Journal of Mechanical Engineering, 2021, 34: 91
doi: 10.1186/s10033-021-00616-w
4 ZHAO J, WANG M, WANG Z, et al Different boost voltage effects on the dynamic response and energy losses of high-speed solenoid valves[J]. Applied Thermal Engineering, 2017, 123: 1494- 1503
doi: 10.1016/j.applthermaleng.2017.05.117
5 WANG P, CHENG Y, LINJAMA M, et al A novel equivalent continuous metering control with a uniform switching strategy for digital valve system[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28 (5): 2449- 2460
doi: 10.1109/TMECH.2023.3247220
6 WANG H, CHEN Z, HUANG J, et al Development of high-speed on-off valves and their applications[J]. Chinese Journal of Mechanical Engineering, 2022, 35 (1): 1- 21
doi: 10.1186/s10033-021-00666-0
7 钟麒, 张斌, 洪昊岑, 等 基于电流反馈的高速开关阀3电压激励控制策略[J]. 浙江大学学报: 工学版, 2018, 52 (1): 8- 15
ZHONG Qi, ZHANG Bin, HONG Haocen, et al Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (1): 8- 15
8 丁凡, 姚健娣, 笪靖, 等 高速开关阀的研究现状[J]. 中国工程机械学报, 2011, 9 (3): 351- 358
DING Fan, YAO Jiandi, DA Jing, et al Advances on high-speed on-off valves[J]. Chinese Journal of Construction Machinery, 2011, 9 (3): 351- 358
doi: 10.3969/j.issn.1672-5581.2011.03.020
9 ZHONG Q, JIA T, XU E, et al A vibration-based measurement method for dynamic characteristic of solenoid switching valve[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 7500810
10 ZHONG Q, WANG X, ZHOU H, et al Investigation into the adjustable dynamic characteristic of the high-speed/valve with an advanced pulsewidth modulation control algorithm[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27 (5): 3784- 3797
doi: 10.1109/TMECH.2021.3131095
11 KONG X, LI S Dynamic performance of high speed solenoid valve with parallel coils[J]. Chinese Journal of Mechanical Engineering, 2014, 27 (4): 816- 821
doi: 10.3901/CJME.2014.0513.091
12 RAHMAN M F, CHEUNG N C, LIM K W Position estimation in solenoid actuators[J]. IEEE Transactions on Industry Applications, 1996, 32 (3): 552- 559
doi: 10.1109/28.502166
13 王文静. 基于阀芯位移软测量的数字阀多级电压智能驱动方法研究[D]. 秦皇岛: 燕山大学, 2022: 1–68.
WANG Wenjing. Multistage voltage intelligent driving method of digital valve based on soft sensor of valve core displacement [D]. Qinhuangdao: Yanshan University, 2022: 1–68.
14 AHN K, YOKOTA S Intelligent switching control of pneumatic actuator using on/off solenoid valves[J]. Mechatronics, 2005, 15 (6): 683- 702
doi: 10.1016/j.mechatronics.2005.01.001
15 ABOROBAA A N, GHAMRY K A, SALEH A, et al Energy-saving and performanceenhancing of a high speed on/off solenoid valve[J]. FME Transactions, 2022, 50 (2): 283- 293
doi: 10.5937/fme2201283A
16 WANG Q, YANG F, YANG Q, et al Experimental analysis of new high-speed powerful digital solenoid valves[J]. Energy Conversion and Management, 2011, 52 (5): 2309- 2313
doi: 10.1016/j.enconman.2010.12.032
17 YUDELL A C, VAN DE VEN J D Predicting solenoid valve spool displacement through current analysis[J]. International Journal of Fluid Power, 2015, 16 (3): 133- 140
doi: 10.1080/14399776.2015.1068549
18 GAO Q, ZHU Y, WU C, et al Identification of critical moving characteristics in high speed on/off valve based on time derivative of the coil current[J]. Journal of Systems and Control Engineering, 2021, 235 (7): 1084- 1099
19 ZHONG Q, XU E, XIE G, et al Dynamic performance and temperature rising characteristic of a high-speed on/off valve based on pre-excitation control algorithm[J]. Chinese Journal of Aeronautics, 2023, 36 (10): 445- 458
doi: 10.1016/j.cja.2023.04.005
20 汪谢乐. 高速开关阀电磁驱动能耗与温度场特性研究[D]. 杭州: 浙江工业大学, 2022: 1–78.
WANG Xiele. Research on electromagnetic driving energy consumption and temperature field characteristics of high speed on/off valve [D]. Hangzhou: Zhejiang University of Technology, 2022: 1–78.
21 徐哲. 汽车线控液压制动系统特性及控制研究[D]. 南京: 南京航空航天大学, 2014: 1–129.
XU Ze. Research on characteristic and control of electro-hydraulic brake system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 1–129.
[1] 甘建平,俞小莉,常晋伟,黄瑞,陈俊玄,李智. 溶液温度波动对动态再生过程的性能影响[J]. 浙江大学学报(工学版), 2024, 58(10): 2104-2110.
[2] 田昊,赵禹任. 高速电磁阀开启特性的光学测量[J]. 浙江大学学报(工学版), 2020, 54(1): 17-22.
[3] 王婷, 陈斌, 姚文熙, 吕征宇. 异步电机无速度传感器控制的Holtz型磁链观测器性能分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1690-1695.
[4] 陈旭东,程放,冯攀. 高阶控制系统动态性能分析[J]. J4, 2014, 48(1): 141-148.