Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2104-2110    DOI: 10.3785/j.issn.1008-973X.2024.10.014
机械工程、能源工程     
溶液温度波动对动态再生过程的性能影响
甘建平1(),俞小莉1,2,常晋伟1,黄瑞1,2,*(),陈俊玄1,李智1
1. 浙江大学 能源工程学院,浙江 杭州 310027
2. 浙江省汽车智能热管理科学与技术重点实验室,浙江 台州 317200
Influence of solution temperature fluctuation on performance of dynamic regeneration process
Jianping GAN1(),Xiaoli YU1,2,Jinwei CHANG1,Rui HUANG1,2,*(),Junxuan CHEN1,Zhi LI1
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Automotive Intelligent Thermal Management Science and Technology of Zhejiang Province, Taizhou 317200, China
 全文: PDF(1089 KB)   HTML
摘要:

为了明晰溶液再生温度波动对溶液再生性能的影响规律,建立再生器的动态仿真模型. 搭建溶液再生系统实验台,设计开展溶液再生过程的动态实验,验证动态模型的准确性. 通过仿真模拟分析溶液再生温度的平均温度、波动周期与幅值对再生溶液质量分数极差和平均再生量的影响规律. 结果表明,溶液平均温度对平均再生量的影响最为明显,溶液温度波动幅值对再生溶液质量分数极差的影响最大. 当溶液温度波动周期为0.5 h时,平均再生量随波动幅值的增大而增大;当波动周期为2.0 h时,平均再生量主要受溶液平均温度的影响. 再生溶液质量分数极差在温度波动幅值小时随波动周期的增大而增大,在幅值大时随周期的增大而减小.

关键词: 溶液再生温度波动动态性能再生量    
Abstract:

A dynamic model of the regenerator was developed to investigate the influence of solution temperature fluctuation on regeneration performance. An experimental platform of solution regeneration system was built to verify the model. The simulation was conducted to investigate the effects of average temperature, fluctuation period, and amplitude of the solution temperature on the range of solution mass fraction and average regeneration rate. Results show that the average temperature of the solution has the most significant impact on the average regeneration rate, while the fluctuation amplitude has the greatest influence on the range of solution mass fraction. When the temperature fluctuation period of the solution is 0.5 h, the average regeneration rate shows an increase with the rise of the fluctuation amplitude. With a fluctuation period of 2.0 h, the average regeneration rate is primarily affected by the average temperature of the solution. The range of solution mass fraction increases with the fluctuation period increases when the temperature fluctuation amplitude is small. Whereas, when the amplitude is large, the mass fraction range exhibits a descending trend with the increase in the period.

Key words: solution regeneration    temperature fluctuation    dynamic performance    regeneration rate
收稿日期: 2023-08-10 出版日期: 2024-09-27
CLC:  TU 83  
基金资助: 宁波市科技创新2025重大专项资助项目(2022Z151);国家自然科学基金资助项目(51976176).
通讯作者: 黄瑞     E-mail: jpgan@zju.edu.cn;hrss@zju.edu.cn
作者简介: 甘建平(1999—),男,硕士生,从事溶液除湿技术研究. orcid.org/0009-0006-8587-8884. E-mail:jpgan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
甘建平
俞小莉
常晋伟
黄瑞
陈俊玄
李智

引用本文:

甘建平,俞小莉,常晋伟,黄瑞,陈俊玄,李智. 溶液温度波动对动态再生过程的性能影响[J]. 浙江大学学报(工学版), 2024, 58(10): 2104-2110.

Jianping GAN,Xiaoli YU,Jinwei CHANG,Rui HUANG,Junxuan CHEN,Zhi LI. Influence of solution temperature fluctuation on performance of dynamic regeneration process. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2104-2110.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.014        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2104

图 1  余热驱动的溶液再生系统原理
图 2  再生器模型的控制体简化图
图 3  储液槽模型的简化图
图 4  溶液再生系统试验台
名称型号精度量程
热电阻PT100±0.1 ℃?70~200 ℃
空气温湿度传感器KS-SHTE23T±2% (RH),
±0.2 ℃
0~100% (RH),
?40~125 ℃
热式气体质量流量计TOCEIL-20N080±1%0~750 kg/h
电磁流量计CKLDY-G-D10-J±0.5%0.03~2.80 m3/h
密度计CJM-2012010?3 g/cm31.0~1.7 g/cm3
表 1  实验测量装置参数
图 5  空气与干燥剂溶液的出口状态参数
图 6  溶液平均温度对溶液质量分数极差和再生量的影响
图 7  溶液温度波动周期对溶液质量分数极差和再生量的影响
图 8  溶液质量分数随时间的变化曲线
图 9  溶液温度波动幅值对溶液质量分数极差和再生量的影响
1 LUO Y, YANG H, LU L Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier[J]. Applied Energy, 2014, 136: 1018- 1025
doi: 10.1016/j.apenergy.2014.06.023
2 WANG L, XIAO F, NIU X, et al Experimental study of dynamic characteristics of liquid desiccant dehumidification processes[J]. Science and Technology for the Built Environment, 2017, 23 (1): 91- 104
doi: 10.1080/23744731.2016.1211875
3 ZHANG X, ZHU Y, XU X, et al Dynamic operational characteristics and preliminary control of a packed liquid desiccant dehumidifier[J]. Energy and Buildings, 2021, 248: 111185
doi: 10.1016/j.enbuild.2021.111185
4 OU X, CAI W, HE X, et al Dynamic model development of heat and mass transfer for a novel desiccant regeneration system in liquid desiccant dehumidification system[J]. Applied Thermal Engineering, 2018, 145: 375- 385
doi: 10.1016/j.applthermaleng.2018.09.027
5 WANG L, XIAO F, NIU X, et al A dynamic dehumidifier model for simulations and control of liquid desiccant hybrid air conditioning systems[J]. Energy and Buildings, 2017, 140: 418- 429
doi: 10.1016/j.enbuild.2017.01.073
6 ZHANG X, XU X, ZHU Y An improved time delay neural network model for predicting dynamic heat and mass transfer characteristics of a packed liquid desiccant dehumidifier[J]. International Journal of Thermal Sciences, 2022, 177: 107548
doi: 10.1016/j.ijthermalsci.2022.107548
7 JIANG Y, WANG X, ZHAO H, et al Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning[J]. Applied Energy, 2020, 259: 114174
doi: 10.1016/j.apenergy.2019.114174
8 ZHANG X, XU X, MA X Development of a new control method for the dynamic liquid desiccant dehumidification process[J]. Energy and Buildings, 2022, 269: 112239
doi: 10.1016/j.enbuild.2022.112239
9 SUESS P, SPIEGEL L Hold-up of Mellapak structured packings[J]. Chemical Engineering and Processing: Process Intensification, 1992, 31 (2): 119- 124
doi: 10.1016/0255-2701(92)85005-M
10 QU H, ZHANG L, ZHANG X Analysis and comparison of flow path and operating parameters in liquid desiccant systems[J]. Applied Thermal Engineering, 2021, 195: 117078
11 YUAN Z, HEROLD K E Thermodynamic properties of aqueous lithium bromide using a multiproperty free energy correlation[J]. HVAC&R Research, 2005, 11 (3): 377- 393
12 LIU W, GONG Y, NIU X, et al Dynamic modeling of liquid-desiccant regenerator based on a state-space method[J]. Applied Energy, 2019, 240: 744- 753
doi: 10.1016/j.apenergy.2019.02.082
13 KABEEL A E, KHALIL A, ELSAYED S S, et al Dynamic behaviour simulation of a liquid desiccant dehumidification system[J]. Energy, 2018, 144: 456- 471
doi: 10.1016/j.energy.2017.11.161
14 COCA-ORTEGÓN A, PRIETO J, CORONAS A Modelling and dynamic simulation of a hybrid liquid desiccant system regenerated with solar energy[J]. Applied Thermal Engineering, 2016, 97: 109- 117
doi: 10.1016/j.applthermaleng.2015.10.149
15 蒋润花, 杨晓西, 杨敏林, 等 内燃机缸套水低温余热驱动除湿机组实验研究[J]. 工程热物理学报, 2014, 35 (12): 2338- 2342
JIANG Runhua, YANG Xiaoxi, YANG Minlin, et al The experimental research of dehumidification unit driven by low temperature waste heat of internal combustion engine jacket water[J]. Journal of Engineering Thermophysics, 2014, 35 (12): 2338- 2342
16 曾台烨, 张小松, 陈瑶 利用冷凝热再生低浓度除湿溶液的实验研究[J]. 制冷学报, 2018, 39 (1): 76- 82
ZENG Taiye, ZHANG Xiaosong, CHEN Yao Experimental investigation for low-concentration liquid desiccant regeneration with utilization of condensation heat[J]. Journal of Refrigeration, 2018, 39 (1): 76- 82
doi: 10.3969/j.issn.0253-4339.2018.01.076
17 彭汉明. 低温余热驱动的液体除湿技术研究[D]. 广州: 华南理工大学, 2012.
PENG Hanming. Study on the liquid desiccant technology with low-temperature waste heat [D]. Guangzhou: South China University of Technology, 2012.
18 陈博闻. 低品位热驱动高效吸收式制冷除湿一体化系统的研究[D]. 南京: 东南大学, 2020.
CHEN Bowen. An innovative energy-efficient air conditioning system driven by low-grade heat [D]. Nanjing: Southeast University, 2020.
19 唐艺丹. 余热驱动的溶液除湿空调系统特性研究[D]. 哈尔滨:哈尔滨工业大学,2009.
TANG Yidan. Research on characteristics of waste heat driven liquid desiccant air-conditioning system [D]. Harbin: Harbin Institute of Technology, 2009.
[1] 王婷, 陈斌, 姚文熙, 吕征宇. 异步电机无速度传感器控制的Holtz型磁链观测器性能分析[J]. 浙江大学学报(工学版), 2014, 48(9): 1690-1695.
[2] 陈旭东,程放,冯攀. 高阶控制系统动态性能分析[J]. J4, 2014, 48(1): 141-148.