Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1706-1717    DOI: 10.3785/j.issn.1008-973X.2023.09.002
土木工程、水利工程     
脆塑性迭代逼近算法的改进
金俊超1,2(),景来红1,2,杨风威1,2,宋志宇1,2,尚朋阳3
1. 黄河勘测规划设计研究院有限公司,河南 郑州 450003
2. 水利部黄河流域水治理与水安全重点实验室(筹),河南 郑州 450003
3. 中水北方勘测设计研究有限责任公司,天津 300222
Improvement of multi-step brittle-plastic approach
Jun-chao JIN1,2(),Lai-hong JING1,2,Feng-wei YANG1,2,Zhi-yu SONG1,2,Peng-yang SHANG3
1. Yellow River Engineering Consulting Limited Company, Zhengzhou 450003, China
2. Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (Under Construction), Zhengzhou 450003, China
3. China Water Resources Beifang Investigation, Design and Research Limited Company, Tianjin 300222, China
 全文: PDF(2812 KB)   HTML
摘要:

针对应力跌落计算中脆塑性迭代逼近算法存在的问题,在主应力空间,结合特征点变形和破坏特征,通过理论推导,系统分析偏应力等比例跌落方法、最小主应力不变跌落方法、塑性位势跌落方法及应力球量不变跌落方法的缺陷. 考虑脆塑性变形和破坏过程中的泊松效应,提出改进的塑性位势跌落方法;推导应力跌落计算更新过程,编写UMAT子程序将该更新过程嵌入软件Abaqus,实现岩石弹塑性应变软化过程数值求解. 采用所提改进方法替换原有的应力跌落计算方法,实现弹塑性应变软化过程的数值模拟. 引入塑性强化算法,实现岩石弹塑性变形破坏全过程的数值计算,并进行多算例验证. 对不同地质条件的Mine-by试验洞及某水电站引水隧洞辅助洞进行开挖模拟,结果表明所提改进方法能够合理模拟工程中围岩弹塑性变形破坏现象.

关键词: 应变软化脆塑性应力跌落数值算法有限元    
Abstract:

Aiming at the problem of multi-step brittle-plastic approach in stress-drop calculation, the defects of existing stress-drop calculation method based on the deviator stress dropping, the method based on the constant minor principal stress in the brittle-plastic process, the method based on the plastic potential theory and the method based on the invariant spherical stress were systematically analyzed in the principal stress space, combined with the deformation and the failure characteristics of feature points. Considering the Poisson’s effect in the brittle-plastic deformation and failure process, the method based on the plastic potential theory was improved. The corresponding stress update process was derived and embedded in the program Abaqus through the UMAT subroutine. The original stress-drop calculation method was replaced by the improved method, realizing the numerical simulation of elastic-plastic strain softening process. The calculation of full elastic-plastic deformation and failure process was further realized by introducing the plastic-strengthening algorithm, which is verified by several examples. The excavation simulation of Mine-by tunnel and auxiliary tunnels of a hydropower station diversion tunnel shows that the improved method can reasonably simulate the elastic-plastic deformation and failure phenomenon of surrounding rock.

Key words: strain softening    brittle-plastic    stress-drop    numerical algorithm    finite element
收稿日期: 2022-11-01 出版日期: 2023-10-16
CLC:  TU 45  
基金资助: 中国博士后科学基金资助项目(2022M721299);河南省重点研发与推广专项(232102320339)
作者简介: 金俊超(1992—),男,博士后,从事岩土工程数值计算方面的研究. orcid.org/0000-0002-0408-7241.E-mail: jinjunchao@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
金俊超
景来红
杨风威
宋志宇
尚朋阳

引用本文:

金俊超,景来红,杨风威,宋志宇,尚朋阳. 脆塑性迭代逼近算法的改进[J]. 浙江大学学报(工学版), 2023, 57(9): 1706-1717.

Jun-chao JIN,Lai-hong JING,Feng-wei YANG,Zhi-yu SONG,Peng-yang SHANG. Improvement of multi-step brittle-plastic approach. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1706-1717.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.002        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1706

图 1  岩石破坏分类
破坏类型 峰值应力 残余应力 屈服函数求解 合理性
单轴拉伸破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ 0\\ 0\\\end{array} \right]$ $\left[ \begin{gathered} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\\end{gathered} \right] = \left[ \begin{gathered} \dfrac{ {\left( {1+2\beta } \right)\sigma _1^{\rm{p} } } }{3} \\ \dfrac{ {\left( {1 - \beta } \right)\sigma _1^{\rm{p} } } }{3} \\ \dfrac{ {\left( {1 - \beta } \right)\sigma _1^{\rm{p} } } }{3} \\ \end{gathered} \right] $ $\left. {\begin{array}{*{20}{l} }\;\;\;{f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } } }{ {1 + \sin {\varphi _{\rm{p} } } } } = 0},\\\begin{array}{l}f _{\rm{r} }^{M - C}\left( { {\sigma ^{\rm{r} } } } \right) = \dfrac{ {\left( {1 + 2\beta } \right)\sigma _1^{\rm{p} } } }{3} - \dfrac{ {1 - \sin {\varphi_{\rm{r} } } } }{ {1 + \sin {\varphi_{\rm{r} } } } }\dfrac{ {\left( {1 - \beta } \right)\sigma _1^{\rm{p} } } }{3} - \dfrac{ {2{c _{\rm{r} } } \cdot \cos {\varphi_{\rm{r} } } } }{ {1 + \sin {\varphi_{\rm{r} } } } } = 0.\end{array}\end{array} } \right\}$ 错误。除了主拉应力方向,横向应力方向也存在残余应力,与事实不符
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} 0\\ 0\\ \sigma _3^{\rm{p} }\\ \end{array} \right]$ $\left[ \begin{gathered} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{gathered} \right] = \left[ \begin{gathered} \dfrac{ {\left( {1 - \beta } \right)\sigma _3^{\rm{p} } } }{3} \\ \dfrac{ {\left( {1 - \beta } \right)\sigma _3^{\rm{p} } } }{3} \\ \dfrac{ {\left( {1+2\beta } \right)\sigma _3^{\rm{p} } } }{3} \\ \end{gathered} \right]$ $\left. {\begin{array}{*{20}{l} }\;\;\;{f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \left( {\sin {\varphi _{\rm{p} } } - 1} \right)\sigma _3^{\rm{p} } - 2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } = 0},\\\begin{array}{l}f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = \dfrac{ {\left( {1 - \beta } \right)\sigma _3^{\rm{p} } } }{3} - \dfrac{ {1 - \sin {\varphi_{\rm{r} } } } }{ {1 + \sin {\varphi_{\rm{r} } } } }\dfrac{ {\left( {1 + 2\beta } \right)\sigma _3^{\rm{p} } } }{3} - \dfrac{ {2{c _{\rm{r} } } \cdot \cos {\varphi_{\rm{r} } } } }{ {1 + \sin {\varphi_{\rm{r} } } } } = 0.\end{array}\end{array} } \right\}$ 错误。除了主压应力方向,横向应力方向也存在残余应力,与事实不符
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ 0\\ - \sigma _1^{\rm{p} }\\ \end{array} \right]$ $\left[ \begin{array}{c} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{array} \right] = \left[ \begin{array}{c} \beta \sigma _1^{\rm{p} } \\ 0 \\ - \beta \sigma _1^{\rm{p} } \\\end{array} \right]$ $\left. {\begin{array}{*{20}{l} } {f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {1 - \sin {\varphi_{\rm{r} } } }}{ {1+\sin {\varphi_{\rm{r} } } }}\left( { - \sigma _1^{\rm{p} } } \right) - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } }}{ {1+\sin {\varphi _{\rm{p} } } }} = 0}, \\ {f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = \beta \sigma _1^{\rm{p} } - \dfrac{ {1 - \sin {\varphi_{\rm{r} } } }}{ {1+\sin {\varphi_{\rm{r} } } }}\left( { - \beta \sigma _1^{\rm{p} } } \right) - \dfrac{ {2{c _{\rm{r} } } \cdot \cos {\varphi_{\rm{r} } } }}{ {1+\sin {\varphi_{\rm{r} } } }} = 0}.\end{array} } \right\}$ 正确。残余阶段满足二向纯剪的应力状态,与事实相符
表 1  偏应力等比例跌落方法存在的问题
破坏类型 峰值应力 残余应力 屈服函数求解 合理性
单轴拉伸破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ 0 \\ \end{array} \right]$ $\left[ \begin{array}{c} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ 0 \\ \end{array} \right]$ $\left. {\begin{array}{*{20}{l} } {f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } } }{ {1+\sin {\varphi _{\rm{p} } } } } = 0}, \\ {f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {2{f _{\rm{r} } } \cdot \cos { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } } = 0}. \end{array} } \right\}$ 错误。残余强度面屈服函数无解
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ \sigma _3^{\rm{p} } \\ \end{array} \right]$ $\left[ \begin{array}{c} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ \sigma _3^{\rm{r} } \\ \end{array} \right]$ $\left. {\begin{array}{*{20}{l} } {f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = - \dfrac{ {1 - \sin { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } }\sigma _3^{\rm{p} } - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } } }{ {1+\sin {\varphi _{\rm{p} } } } } = 0}, \\ {f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = - \dfrac{ {1 - \sin { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } }\sigma _3^{\rm{r} } - \dfrac{ {2{f _{\rm{r} } } \cdot \cos { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } } = 0}. \end{array} } \right\}$ 正确。残余阶段满足单轴压缩的应力状态,与事实相符
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ - \sigma _1^{\rm{p} } \\\end{array} \right]$ $\left[ \begin{array}{c} \sigma _1^{\rm{r} } \\ \sigma _2^{\rm{r} } \\ \sigma _3^{\rm{r} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ \sigma _3^{\rm{r} } \\ \end{array} \right]$ $\left. {\begin{array}{*{20}{l} } {f_{\rm{p} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{p} } } } \right) = \sigma _1^{\rm{p} }+\dfrac{ {1 - \sin {\varphi _{\rm{p} } } } }{ {1+\sin {\varphi _{\rm{p} } } } }\sigma _1^{\rm{p} } - \dfrac{ {2{c _{\rm{p} } } \cdot \cos {\varphi _{\rm{p} } } } }{ {1+\sin {\varphi _{\rm{p} } } } } = 0}, \\ {f _{\rm{r} }^{ {\rm{M} } - {\rm{C} } }\left( { {\sigma ^{\rm{r} } } } \right) = \sigma _1^{\rm{p} } - \dfrac{ {1 - \sin { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } }\sigma _3^{\rm{r} } - \dfrac{ {2{f _{\rm{r} } } \cdot \cos { {\varphi _{\rm{r} } } } } }{ {1+\sin { {\varphi _{\rm{r} } } } } } = 0}.\end{array} } \right\}$ 错误。残余阶段不满足二向纯剪的应力状态,与事实不符
表 2  最小主应力不变跌落方法存在的问题
破坏类型 峰值应力 应力跌落过程的主应力增量 合理性
单轴拉伸破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ 0 \\ \end{array} \right]$ $ \;\;\;\; \left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right] \left[ \begin{array}{c} - \Delta \varepsilon _1^{\rm{p}}\\0\\0\end{array} \right] = \left[ \begin{array}{c}- \left( {\lambda +2G} \right)\Delta \varepsilon _1^{\rm{p}}\\ - \lambda \Delta \varepsilon _1^{\rm{p}}\\ - \lambda \Delta \varepsilon _1^{\rm{p}}\end{array} \right]$ 错误。除了主拉伸方向应力发生改变之外,横向应力也发生改变,与事实不符
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ \sigma _3^{\rm{p} } \\\end{array} \right]$ $ \;\;\;\;\left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right]\left[ \begin{array}{c} \quad 0 \\\quad 0 \\ - \Delta \varepsilon _3^{\rm{p}} \\ \end{array} \right] = \left[ \begin{array}{c}\quad - \lambda \Delta \varepsilon _3^{\rm{p}} \\ \quad - \lambda \Delta \varepsilon _3^{\rm{p}} \\ - \left( {\lambda +2G} \right)\Delta \varepsilon _3^{\rm{p}} \\ \end{array} \right] $ 错误。除了主压缩方向应力发生改变之外,横向应力也发生改变,与事实不符
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ - \sigma _1^{\rm{p} } \\\end{array} \right]$ $ \left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right]\left[ \begin{array}{c} \Delta \varepsilon _1^{\rm{p}} \\ 0 \\ - \Delta \varepsilon _1^{\rm{p}} \\ \end{array} \right] = \left[ \begin{array}{c} 2G\Delta \varepsilon _1^{\rm{p}} \\ 0 \\ - 2G\Delta \varepsilon _1^{\rm{p}} \\ \end{array} \right] $ 正确。只有1和3方向应力发生变化,与事实相符
表 3  塑性位势跌落方法存在的问题
破坏类型 峰值应力 残余应力 屈服函数求解 合理性
单轴拉伸破坏 $\left[\begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ 0 \\ \end{array} \right]$ $ \left. {\begin{array}{*{20}{c}} {\dfrac{{\sigma _1^{\rm{r}}}}{2} = \dfrac{{\sigma _1^{\rm{p}}}}{2}}, \\ {\dfrac{{\sigma _1^{\rm{r}}}}{{\sigma _1^{\rm{r}}}} = \dfrac{{\sigma _1^{\rm{p}}}}{{\sigma _1^{\rm{p}}}}} .\end{array}} \right\} $ $ \left. {\begin{array}{*{20}{l}} {f_{\rm{p}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma^{\rm{p}}}} \right) = \sigma _1^{\rm{p}}- \dfrac{{2{c _{\rm{p}}} \cdot \cos {\varphi ^{\rm{p}}}}}{{1+\sin {\varphi ^{\rm{p}}}}} = 0}, \\ {f_{\rm{r}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma ^{\rm{r}}}} \right) = \sigma _1^{\rm{p}}- \dfrac{{2{c _{\rm{r}}} \cdot \cos {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}} = 0}. \end{array}} \right\} $ 错误。残余强度面屈服函数无解
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} 0 \\ 0\\ \sigma _3^{\rm{p} }\\\end{array} \right]$ $ \left. {\begin{array}{*{20}{c}} {\dfrac{{ - \sigma _3^{\rm{r}}}}{2} = \dfrac{{ - \sigma _3^{\rm{p}}}}{2}}, \\ {\dfrac{0}{{ - \sigma _3^{\rm{r}}}} = \dfrac{0}{{ - \sigma _3^{\rm{p}}}}}. \end{array}} \right\} $ $ \left. {\begin{array}{*{20}{l}} {f_{\rm{p}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma^{\rm{p}}}} \right) = - \dfrac{{1 - \sin {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}}\sigma _3^{\rm{p}}- \dfrac{{2{c _{\rm{p}}} \cdot \cos {\varphi ^{\rm{p}}}}}{{1+\sin {\varphi ^{\rm{p}}}}} = 0}, \\ {f_{\rm{r}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma ^{\rm{r}}}} \right) = - \dfrac{{1 - \sin {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}}\sigma _3^{\rm{p}}- \dfrac{{2{c _{\rm{r}}} \cdot \cos {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}} = 0}. \end{array}} \right\} $ 错误。残余强度面屈服函数无解
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ \sigma _2^{\rm{p} }\\ \sigma _3^{\rm{p} }\\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p}}\\ 0 \\ - \sigma _1^{\rm{p}}\\ \end{array} \right]$ $ \left. {\begin{array}{*{20}{c}} {\dfrac{{\sigma _1^{\rm{r}} - \sigma _3^{\rm{r}}}}{2} = \dfrac{{\sigma _1^{\rm{p}}- \left( { - \sigma _1^{\rm{p}}} \right)}}{2}}, \\ {\dfrac{{\sigma _1^{\rm{r}}}}{{\sigma _1^{\rm{r}} - \sigma _3^{\rm{r}}}} = \dfrac{{\sigma _1^{\rm{p}}}}{{\sigma _1^{\rm{p}}- \left( { - \sigma _1^{\rm{p}}} \right)}}} .\end{array}} \right\} $ $ \left. {\begin{array}{*{20}{l}} {f_{\rm{p}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma^{\rm{p}}}} \right) = \sigma _1^{\rm{p}}+\dfrac{{1 - \sin {\varphi ^{\rm{p}}}}}{{1+\sin {\varphi ^{\rm{p}}}}}\sigma _1^{\rm{p}}- \dfrac{{2{c _{\rm{p}}} \cdot \cos {\varphi ^{\rm{p}}}}}{{1+\sin {\varphi ^{\rm{p}}}}} = 0} ,\\ {f_{\rm{r}}^{{\rm{M}} - {\rm{C}}}\left( {{\sigma ^{\rm{r}}}} \right) = \sigma _1^{\rm{p}}- \dfrac{{1 - \sin {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}}\sigma _3^{\rm{p}}- \dfrac{{2{c _{\rm{r}}} \cdot \cos {{\varphi _{\rm{r}}}}}}{{1+\sin {{\varphi _{\rm{r}}}}}} = 0}. \end{array}} \right\} $ 错误。残余强度面屈服函数无解
表 4  球量不变跌落方法存在的问题
图 2  红砂岩单轴拉伸试验结果[22]
破坏类型 峰值应力 应力跌落过程的主应力增量 合理性
单轴拉伸破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\\end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} }\\ 0 \\ 0 \\ \end{array} \right]$ $ \left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right]\left[\begin{array}{c} - \Delta \varepsilon _1^{\rm{p}} \\ v\Delta \varepsilon _1^{\rm{p}} \\ v\Delta \varepsilon _1^{\rm{p}} \\ \end{array} \right] = \left[ \begin{array}{c} - E\Delta \varepsilon _1^{\rm{p}} \\ 0 \\ 0 \\ \end{array} \right] $ 正确。仅主拉伸方向应力发生改变与事实相符
单轴压缩破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\\end{array} \right] = \left[ \begin{array}{c} 0 \\ 0 \\ \sigma _3^{\rm{p} } \\\end{array} \right]$ $\left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c} } {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array} } \right] \left[\begin{array}{c} v\Delta \varepsilon _3^{\rm{p} } \\ v\Delta \varepsilon _3^{\rm{p} } \\ - \Delta \varepsilon _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c}- \lambda \Delta \varepsilon _3^{\rm{p} } \\- \lambda \Delta \varepsilon _3^{\rm{p} }\\- \left( {\lambda +2G} \right)\Delta \varepsilon _3^{\rm{p} } \end{array} \right]$ 正确。仅主压缩方向应力发生改变,与事实相符
二向纯剪破坏 $\left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ \sigma _2^{\rm{p} } \\ \sigma _3^{\rm{p} } \\ \end{array} \right] = \left[ \begin{array}{c} \sigma _1^{\rm{p} } \\ 0 \\ - \sigma _1^{\rm{p} } \\\end{array} \right]$ $ \left[ \begin{array}{c} \Delta {\sigma _1} \\ \Delta {\sigma _2} \\ \Delta {\sigma _3} \\ \end{array} \right] = \left[ {\begin{array}{*{20}{c}} {\lambda +2G}&\lambda &\lambda \\ \lambda &{\lambda +2G}&\lambda \\ \lambda &\lambda &{\lambda +2G} \end{array}} \right] \left[ \begin{array}{c} \left( {1 - v} \right)\Delta \varepsilon _1^{\rm{p}} \\ 0 \\ - \left( {1 - v} \right)\Delta \varepsilon _1^{\rm{p}} \\\end{array} \right] = \left[\begin{array}{c} 2\left( {1 - v} \right)G\Delta \varepsilon _1^{\rm{p}} \\ 0 \\ - 2\left( {1 - v} \right)G\Delta \varepsilon _1^{\rm{p}} \\ \end{array} \right] $ 正确。只有1和3方向应力发生变化,与事实相符
表 5  基于泊松效应的改进塑性位势跌落方法的合理性
图 3  红砂岩单轴拉伸应力-应变模拟曲线对比
图 4  花岗岩三轴压缩应力-应变模拟曲线对比
MPa
试验数据 本研究方法 原方法
$ {\sigma _1} $ $ {\sigma _3} $ $ {\sigma _1} $ $ {\sigma _3} $ $ {\sigma _1} $ $ {\sigma _3} $
15.86 0 15.86 0 ?5.06 ?52.32
52.76 5 52.76 5 29.81 ?57.36
89.65 10 89.65 10 64.69 ?62.41
表 6  2种应力跌落计算方法的残余应力模拟结果对比
图 5  砂岩压剪应力-应变模拟曲线对比
图 6  岩石弹塑性变形破坏全过程计算流程
图 7  Tennessee大理岩及三峡花岗岩的三轴压缩试验模拟
图 8  圆隧围岩挖掘及有限元模型
图 9  圆隧力学响应有限元模拟结果与解析解对比
图 10  Mine-by隧洞有限元模型
参数 数值 参数 数值
弹性模量E/GPa 60 峰值内摩擦角φp/(o) 0
泊松比ν 0.25 残余内摩擦角φr/(o) 48
峰值黏聚力cp/MPa 40 剪胀角ψ/(o) 30
残余黏聚力cr/MPa 5 临界塑性应变η 0.003
表 7  Mine-by隧洞围岩计算参数
图 11  模拟的隧洞塑性区和破坏区
图 12  监测的隧洞塑性区和破坏区[29]
图 13  AK10+900断面开挖松动圈[31]
图 14  辅助洞有限元模型
参数 数值 参数 数值
弹性模量E/GPa 18.9 峰值内摩擦角φp/(o) 22.4
泊松比ν 0.22 残余内摩擦角φr/(o) 42
峰值黏聚力cp/MPa 20.9 剪胀角ψ/(o) 15
残余黏聚力cr/MPa 9.1 临界塑性应变η 0.005
表 8  辅助洞围岩计算参数
图 15  开挖模拟结果
1 CLAUSEN J, DAMKILDE L, ANDERSEN L An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space[J]. Computers and Structures, 2007, 85 (23/24): 1795- 1807
2 CLAUSEN J, DAMKILDE L An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45 (6): 831- 847
doi: 10.1016/j.ijrmms.2007.10.004
3 ABBO A J, LYAMIN A V, SLOAN S W, et al A C2 continuous approximation to the Mohr-Coulomb yield surface[J]. International Journal of Solids and Structures, 2011, 48 (21): 3001- 3010
doi: 10.1016/j.ijsolstr.2011.06.021
4 DAI Z, YOU T, XU X, et al Removal of singularities in Hoek-Brown criterion and its numerical implementation and applications[J]. International Journal of Geomechanics, 2018, 18 (10): 4018127
doi: 10.1061/(ASCE)GM.1943-5622.0001201
5 KINDRACHUK V M, UNGER J F A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration[J]. International Journal of Fatigue, 2017, 100: 215- 228
doi: 10.1016/j.ijfatigue.2017.03.015
6 XU X, CUI Z Investigation of a fractional derivative creep model of clay and its numerical implementation[J]. Computers and Geotechnics, 2020, 119: 103387
doi: 10.1016/j.compgeo.2019.103387
7 ZHENG H, LIU D F, LEE C F, et al Principle of analysis of brittle-plastic rock mass[J]. International Journal of Solids and Structures, 2005, 42 (1): 139- 158
doi: 10.1016/j.ijsolstr.2004.06.050
8 SØRENSEN E S, CLAUSEN J, DAMKILDE L Finite element implementation of the Hoek-Brown material model with general strain softening behavior[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 163- 174
doi: 10.1016/j.ijrmms.2015.05.005
9 KARAVELIĆ E, IBRAHIMBEGOVIC A, DOLAREVIĆ S Multi-surface plasticity model for concrete with 3D hardening/softening failure modes for tension, compression and shear[J]. Computers and Structures, 2019, 221: 74- 90
doi: 10.1016/j.compstruc.2019.05.009
10 JIA S, ZHAO Z, WU G, et al A coupled elastoplastic damage model for clayey rock and its numerical implementation and validation[J]. Geofluids, 2020, 2020: 9853782
11 许梦飞, 姜谙男, 史洪涛, 等 基于Hoek-Brown准则的岩体弹塑性损伤模型及其应力回映算法研究[J]. 工程力学, 2020, 37 (1): 195- 206
XU Meng-fei, JIANG An-nan, SHI Hong-tao, et al An elastoplastic damage constitutive rock model and its stress mapping algorithm based on Hoek-Brown criterion[J]. Engineering Mechanics, 2020, 37 (1): 195- 206
12 ZHANG J C, XU W Y, WANG H L, et al A coupled elastoplastic damage model for brittle rocks and its application in modelling underground excavation[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 84: 130- 141
doi: 10.1016/j.ijrmms.2015.11.011
13 ZHAO L Y, ZHU Q Z, SHAO J F A micro-mechanics based plastic damage model for quasi-brittle materials under a large range of compressive stress[J]. International Journal of Plasticity, 2018, 100: 156- 176
doi: 10.1016/j.ijplas.2017.10.004
14 ZHAO X, GUO J, HE E, et al Development of the coupled elastoplastic damage constitutional model of acidized shale gas formation based on experimental study[J]. Journal of Geophysics and Engineering, 2019, 16 (2): 332- 344
doi: 10.1093/jge/gxz010
15 WANG S, XU W, WANG W Experimental and numerical investigations on hydro-mechanical properties of saturated fine-grained sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104222
doi: 10.1016/j.ijrmms.2020.104222
16 李翻翻, 陈卫忠, 雷江, 等 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41 (1): 132- 140
LI Fan-fan, CHEN Wei-zhong, LEI Jiang, et al Study of mechanical properties of claystone based on plastic damage[J]. Rock and Soil Mechanics, 2020, 41 (1): 132- 140
doi: 10.16285/j.rsm.2018.2177
17 GAO M, ZHANG K, ZHOU Q, et al Numerical investigations on the effect of ultra-high cutting speed on the cutting heat and rock-breaking performance of a single cutter[J]. Journal of Petroleum Science and Engineering, 2020, 190: 107120
doi: 10.1016/j.petrol.2020.107120
18 WANG S, ZHENG H, LI C, et al A finite element implementation of strain-softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48 (1): 67- 76
doi: 10.1016/j.ijrmms.2010.11.001
19 沈新普, 岑章志, 徐秉业 弹脆塑性软化本构理论的特点及其数值计算[J]. 清华大学学报: 自然科学版, 1995, 35 (2): 22- 27
SHEN Xin-pu, CEN Zhang-zhi, XU Bing-ye The characteristics of elasto-brittle-plastic softening constitutive theory and its numerical calculation[J]. Journal of Tsinghua University: Science and Technology, 1995, 35 (2): 22- 27
20 舒芹, 王学滨, 赵扬锋, 等 应力球量不变应力跌落方式下非均质岩样破坏过程数值模拟[J]. 岩土力学, 2020, 41 (10): 3465- 3472
SHU Qin, WANG Xue-bin, ZHAO Yang-feng, et al Numerical simulation of failure processes of heterogeneous rock specimens under assumption of invariant spherical stress during stress drop[J]. Rock and Soil Mechanics, 2020, 41 (10): 3465- 3472
21 金俊超, 佘成学, 尚朋阳 基于Hoek-Brown准则的应变软化模型有限元数值实现研究[J]. 工程力学, 2020, 37 (1): 43- 52
JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang A finite element implementation of the strain-softening model based on the Hoed-Brown criterion[J]. Engineering Mechanics, 2020, 37 (1): 43- 52
22 ZENG B, HUANG D, YE S, et al Triaxial extension tests on sandstone using a simple auxiliary apparatus[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 120: 29- 40
doi: 10.1016/j.ijrmms.2019.06.006
23 MENG F, ZHOU H, ZHANG C, et al Evaluation methodology of brittleness of rock based on post-peak stress-strain curves[J]. Rock Mechanics and Rock Engineering, 2015, 48: 1787- 1805
doi: 10.1007/s00603-014-0694-6
24 许江, 刘婧, 吴慧, 等 压剪应力条件下砂岩开裂扩展过程的试验研究[J]. 岩石力学与工程学报, 2013, 32 (Suppl.2): 3042- 3048
XU Jiang, LIU Jing, WU Hui, et al Test study of sandstone cracking and propagation process under compressive-shear stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Suppl.2): 3042- 3048
25 韩建新, 李术才, 李树忱, 等 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. 岩土力学, 2013, 34 (2): 342- 346
HAN Jian-xin, LI Shu-cai, LI Shu-chen, et al Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. Rock and Soil Mechanics, 2013, 34 (2): 342- 346
26 沈华章, 王水林, 刘泉声 模拟应变软化岩石三轴试验过程曲线[J]. 岩土力学, 2014, 35 (6): 1647- 1654
SHEN Hua-zhang, WANG Shui-lin, LIU Quan-sheng Simulation of constitutive curves for strain-softening rock in triaxial compression[J]. Rock and Soil Mechanics, 2014, 35 (6): 1647- 1654
27 LEE Y, PIETRUSZCZAK S A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology, 2008, 23 (5): 588- 599
doi: 10.1016/j.tust.2007.11.002
28 PARK K H Similarity solution for a spherical or circular opening in elastic-strain softening rock mass[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 151- 159
doi: 10.1016/j.ijrmms.2014.07.003
29 HAJIABDOLMAJID V, KAISER P K, MARTIN C D Modelling brittle failure of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39 (6): 731- 741
doi: 10.1016/S1365-1609(02)00051-5
30 ZHAO X G, CAI M Influence of plastic shear strain and confinement-dependent rock dilation on rock failure and displacement near an excavation boundary[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47 (5): 723- 738
doi: 10.1016/j.ijrmms.2010.04.003
31 XU D, ZHOU Y, QIU S, et al Elastic modulus deterioration index to identify the loosened zone around underground openings[J]. Tunnelling and Underground Space Technology, 2018, 82: 20- 29
doi: 10.1016/j.tust.2018.07.032
[1] 王玲茂,赵唯坚. 基于肋尺度精细化建模的机械锚固钢筋拉拔性能模拟[J]. 浙江大学学报(工学版), 2023, 57(8): 1573-1584.
[2] 陈晓丹,吴澳,赵睿杰,徐恩翔. 磁悬浮无轴离心泵叶轮转子动力学特性[J]. 浙江大学学报(工学版), 2023, 57(8): 1680-1688.
[3] 谢国庆,王密,孔德文. 新型高强硅酸盐墙板钢框架抗震性能[J]. 浙江大学学报(工学版), 2023, 57(7): 1402-1409.
[4] 鲍佳文,高强,唐林,赵唯坚. 钢筋套筒灌浆连接拉伸性能的精细有限元分析[J]. 浙江大学学报(工学版), 2023, 57(4): 814-823.
[5] 陈廷国,郭召迪. 具有杆间扭转约束的轴心压杆稳定性研究[J]. 浙江大学学报(工学版), 2023, 57(3): 598-605.
[6] 龚涛,刘开富,谢新宇,许纯泰,娄扬,郑凌逶. 基于次加载面摩擦模型的接触面剪切特性研究[J]. 浙江大学学报(工学版), 2022, 56(7): 1328-1335, 1352.
[7] 李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.
[8] 桂美将,周小虎,谢晓亮,刘市祺,李浩,王晋利,侯增广. 面向机器人触力觉感知的磁场解析与仿真[J]. 浙江大学学报(工学版), 2022, 56(6): 1144-1151.
[9] 刘彩霞,潘亭亭,孙一帆,李帅,刘平,黄英. 用于康复训练的分段式气动软体驱动器[J]. 浙江大学学报(工学版), 2022, 56(6): 1127-1134.
[10] 张朝,黄正东,熊仲明,原晓露,许有俊,康佳旺. 地裂缝环境下钢筋混凝土框架结构的地震响应[J]. 浙江大学学报(工学版), 2022, 56(10): 2028-2036.
[11] 王洁,李钊,李子然. 全钢载重子午线轮胎胎面磨耗行为研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1615-1624.
[12] 李吉冬,钟莹,李醒飞. 磁流体动力学动量轮的致动特性和影响因素[J]. 浙江大学学报(工学版), 2021, 55(9): 1676-1683.
[13] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[14] 蒋佳琪,徐日庆,裘志坚,詹晓波,汪悦,成广谋. 超固结土的蛋形弹塑性本构模型[J]. 浙江大学学报(工学版), 2021, 55(8): 1444-1452.
[15] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.