Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1144-1151    DOI: 10.3785/j.issn.1008-973X.2022.06.011
智能机器人     
面向机器人触力觉感知的磁场解析与仿真
桂美将1,2(),周小虎1(),谢晓亮1,刘市祺1,李浩1,2,王晋利3,侯增广1,2,*()
1. 中国科学院自动化研究所 复杂系统管理与控制国家重点实验室,北京 100190
2. 中国科学院大学 人工智能学院,北京 100049
3. 中国矿业大学(北京) 机电与信息工程学院,北京 100083
Analysis and simulation of magnetic field for robot tactile perception
Mei-jiang GUI1,2(),Xiao-hu ZHOU1(),Xiao-liang XIE1,Shi-qi LIU1,Hao LI1,2,Jin-li WANG3,Zeng-guang HOU1,2,*()
1. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
 全文: PDF(1891 KB)   HTML
摘要:

为了探究适用于柔性机器人触力觉感知装置的磁场计算方法,利用弹性橡胶与霍尔器件设计带有凸起结构的感知装置. 利用环式Halbach阵列的磁场方程,对形变后装置的磁场进行计算. 为了验证所提出的计算方法,基于COMSOL Multiphysics平台构建并求解不同形变下感知装置的有限元仿真模型. 通过对比理论计算结果与模型仿真结果,验证了所提出的计算方法在不同形变下均有较好的适用性. 进一步的数据拟合表明,随着仿真网络的不断细化,仿真值逐渐逼近理论值,最小误差为3.18%,证明二者具有较高的一致性.

关键词: 触力觉感知弹性橡胶霍尔器件环式Halbach阵列解析计算有限元仿真    
Abstract:

A sensing device with a convex structure was designed using elastic rubber and Hall devices, in order to explore the magnetic field calculation method suitable for the flexible tactile sensing device. The magnetic field generated by the deformed device was then calculated based on the magnetic equation of the Halbach cylinder. To further verify the proposed calculation method, finite element simulation models of the sensing device under different deformations were constructed and solved based on the COMSOL Multiphysics platform. Comparing the calculation results with the simulation results shows that the proposed calculation method has great applicability under different deformations. Moreover, data fitting demonstrates that the simulation value gradually approaches the theoretical value with the continuous refinement of the simulation network. The minimum error was 3.18%, proving the high consistency between the simulated value and the theoretical value.

Key words: tactile perception    elastic rubber    Hall device    Halbach cylinder    analytical calculation    finite element simulation
收稿日期: 2022-03-21 出版日期: 2022-06-30
CLC:  TP 2  
基金资助: 国家自然科学基金资助项目(62003343, 62073325, U20A20224, U1913210);北京市自然科学基金资助项目(M22008);中国科学院青年创新促进会会员资助项目(2020140)
通讯作者: 侯增广     E-mail: guimeijiang2019@ia.ac.cn;xiaohu.zhou@ia.ac.cn;zengguang.hou@ia.ac.cn
作者简介: 桂美将(1997—),男,博士生,从事机器人触力觉研究. orcid.org/0000-0001-9803-891X. E-mail: guimeijiang2019@ia.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
桂美将
周小虎
谢晓亮
刘市祺
李浩
王晋利
侯增广

引用本文:

桂美将,周小虎,谢晓亮,刘市祺,李浩,王晋利,侯增广. 面向机器人触力觉感知的磁场解析与仿真[J]. 浙江大学学报(工学版), 2022, 56(6): 1144-1151.

Mei-jiang GUI,Xiao-hu ZHOU,Xiao-liang XIE,Shi-qi LIU,Hao LI,Jin-li WANG,Zeng-guang HOU. Analysis and simulation of magnetic field for robot tactile perception. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1144-1151.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.011        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1144

图 1  柔性触力觉感知装置结构示意图
图 2  2阶环式Halbach阵列示意图
图 3  环式Halbach阵列形变示意图
d ai bi ao bo
mm
0.10 3.10s 2.90 4.60 4.40
0.20 3.21 2.80 4.71 4.30
0.30 3.33 2.70 4.82 4.20
0.40 3.46 2.60 4.94 4.10
0.50 3.60 2.50 5.06 4.00
0.60 3.75 2.40 5.19 3.90
0.70 3.91 2.30 5.33 3.80
0.80 4.09 2.20 5.47 3.70
0.90 4.29 2.10 5.63 3.60
1.00 4.50 2.00 5.79 3.50
1.10 4.74 1.90 5.96 3.40
1.20 5.00 1.80 6.14 3.30
1.30 5.29 1.70 6.33 3.20
1.40 5.63 1.60 6.53 3.10
1.50 6.00 1.50 6.75 3.00
表 1  椭圆形阵列几何参数
图 4  分块法示意图
图 5  4种形变和3种等分情形下环式Halbach阵列的磁场仿真热力图
$ d/ $mm $ {B}_{\mathrm{c}}/\mathrm{m}\mathrm{T} $ $ {B}_{\mathrm{t}}/\mathrm{m}\mathrm{T} $ ${E}_{\mathrm{m} }$/%
N=16 N=32 N=48 N=64 N=80 N=96 N=112 N=128 N=144
0.10 540.14 551.03 552.52 553.54 553.32 553.77 553.89 553.94 553.90 572.16 3.18
0.20 541.16 551.57 553.85 554.38 554.59 554.72 554.91 555.00 555.07 573.60 3.23
0.30 543.58 554.12 556.08 556.49 557.08 557.19 557.36 557.52 557.75 576.16 3.20
0.40 546.79 557.38 559.01 560.24 560.38 560.73 560.76 560.94 560.81 579.99 3.29
0.50 550.85 561.47 563.56 564.30 564.60 564.52 564.86 564.92 565.02 585.25 3.46
0.60 557.21 566.69 569.89 570.76 571.01 571.15 571.29 571.30 571.31 592.13 3.52
0.70 565.92 576.82 578.92 579.75 579.87 580.08 579.92 580.23 580.48 600.84 3.39
0.80 575.28 586.54 588.57 589.37 589.44 589.60 589.83 589.90 589.98 611.62 3.54
0.90 587.83 599.18 603.12 602.14 602.42 602.70 602.67 602.67 602.72 624.74 3.46
1.00 602.58 614.23 616.54 617.39 617.55 618.15 617.91 618.02 618.38 640.50 3.45
1.10 620.49 632.49 634.79 635.50 635.96 636.26 636.14 636.26 636.48 659.26 3.46
1.20 641.58 653.93 656.20 657.08 657.35 657.83 657.79 658.04 657.93 681.43 3.43
1.30 666.77 679.59 682.13 683.13 683.35 683.54 683.64 683.73 683.75 707.47 3.35
1.40 695.35 708.90 711.46 712.31 712.66 712.82 713.40 713.34 713.41 737.94 3.32
1.50 729.39 743.55 746.09 747.10 747.75 747.71 748.19 748.05 748.10 773.48 3.27
表 2  磁感应强度仿真值与理论值
$ d/ $mm $T_{\rm{num} }/{{\rm{s}}}$ ${ {T} }_{ { {\rm{o} } }{ {\rm{u} } }{ {\rm{r} } } }/{{\rm{s}}}$
N=16 N=32 N=48 N=64 N=80 N=96 N=112 N=128 N=144
0.10 13 21 34 51 73 109 150 186 242 0.00303
0.20 11 20 34 52 72 107 147 182 245 0.00097
0.30 15 22 38 50 78 110 154 175 236 0.00107
0.40 14 23 39 50 76 105 148 173 245 0.00080
0.50 13 22 33 50 74 106 146 184 247 0.00281
0.60 14 21 37 51 74 113 149 182 249 0.00047
0.70 13 23 39 52 74 112 146 180 246 0.00040
0.80 11 20 35 49 75 106 146 186 241 0.00040
0.90 14 21 39 49 74 114 148 185 253 0.00040
1.00 11 21 38 51 78 104 144 185 247 0.00040
1.10 15 22 39 53 75 107 140 182 231 0.00038
1.20 13 22 33 52 75 104 142 185 246 0.00037
1.30 15 17 39 52 77 97 145 186 251 0.00037
1.40 13 20 34 51 75 101 143 177 232 0.00045
1.50 10 21 34 51 77 108 150 185 240 0.00044
表 3  2种方法在不同形变情形下的计算时间
$ d $/mm $ b $ $ l $ $ k $ $ {R}^{2} $ ${R}_{{\rm{A}}}^{2}$ RMSE
0.10 553.70 ?62.61 0.91 0.9961 0.9947 0.3239
0.20 554.82 ?55.22 0.92 0.9986 0.9981 0.1967
0.30 557.26 ?54.40 0.92 0.9949 0.9932 0.3719
0.40 560.65 ?52.01 0.92 0.9952 0.9936 0.3653
0.50 564.73 ?55.48 0.92 0.9978 0.9971 0.2460
0.60 571.26 ?43.54 0.93 0.9998 0.9998 0.0715
0.70 580.07 ?58.07 0.92 0.9978 0.997 0.2537
0.80 589.70 ?61.77 0.91 0.9979 0.9972 0.2494
0.90 602.70 ?70.88 0.91 0.9920 0.9893 0.5094
1.00 617.94 ?59.11 0.92 0.9969 0.9958 0.3274
1.10 636.13 ?62.45 0.92 0.9975 0.9967 0.2957
1.20 657.70 ?63.26 0.92 0.9968 0.9957 0.3468
1.30 683.55 ?67.03 0.92 0.9987 0.9983 0.2298
1.40 713.03 ?69.82 0.92 0.9963 0.9951 0.4088
1.50 747.84 ?72.55 0.92 0.9969 0.9959 0.3893
表 4  不同形变量下的拟合结果与评价指标
1 ZHOU X, XIE X, LIU S, et al Surgical skill assessment based on dynamic warping manipulations[J]. IEEE Transactions on Medical Robotics and Bionics, 2022, 4 (1): 50- 61
doi: 10.1109/TMRB.2022.3141313
2 CHEN D, SONG A, TIAN L, et al MH-Pen: a pen-type multi-mode haptic interface for touch screens interaction[J]. IEEE Transactions on Haptics, 2018, 11 (4): 555- 567
3 TEE B, CHORTOS A, BERNDT A, et al A skin-inspired organic digital mechanoreceptor[J]. Science, 2015, 350 (6258): 313- 316
doi: 10.1126/science.aaa9306
4 KIM Y, CHORTOS A, XU W, et al A bioinspired flexible organic artificial afferent nerve[J]. Science, 2018, 360 (6392): 998- 1003
doi: 10.1126/science.aao0098
5 ZHOU X, XIE X, FENG Z, et al A multilayer and multimodal-fusion architecture for simultaneous recog-nition of endovascular manipulations and assessment of technical skills[J]. IEEE Transactions on Cybernetics, 2020, 50 (4): 2565- 2577
6 宋爱国 机器人触觉传感器发展概述[J]. 测控技术, 2020, 39 (5): 2- 8
SONG Ai-guo Development of robot tactile sensor[J]. Measurement and Control Technology, 2020, 39 (5): 2- 8
7 宋爱国, 田磊, 倪得晶, 等 多模态力触觉交互技术及应用[J]. 中国科学: 信息科学, 2017, 47 (9): 1183- 1197
SONG Ai-guo, TIAN Lei, NI De-jing, et al Multi-mode haptic interaction technique and its application[J]. Scientia Sinica: Informationis, 2017, 47 (9): 1183- 1197
doi: 10.1360/N112017-00081
8 GUI M, ZHOU X, XIE X, et al Design and experiments of a novel Halbach-cylinder-based magnetic skin: a preliminary study[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 9502611
9 YAN Y, HU Z, YANG Z, et al Soft magnetic skin for super-resolution tactile sensing with force self-decoupling[J]. Science Robotics, 2021, 6 (51): eabc8801
doi: 10.1126/scirobotics.abc8801
10 WANG H, DE BOER G, KOW J, et al Design methodology for magnetic field-based soft tri-axis tactile sensors[J]. Sensors, 2016, 16 (9): 1356
doi: 10.3390/s16091356
11 TOMO T P, REGOLI M, SCHMITZ A, et al A new silicone structure for uSkin: a soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot iCub[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 2584- 2591
doi: 10.1109/LRA.2018.2812915
12 ZHOU X, XIE X, LIU S, et al Learning skill characteristics from manipulations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 1- 15
13 XU L, GU H, CHANG M, et al Magnetic target linear location method using two-point gradient full tensor[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 6007808
14 CHEN Y, ZHANG W, BIRD J Z, et al A 3-D analytic-based model of a null-flux Halbach array electrodynamic suspension device[J]. IEEE Transactions on Magnetics, 2015, 51 (11): 8300405
15 LADGHEM-CHIKOUCHE B, BOUGHRARA K, DUBAS F, et al 2-D semi-analytical magnetic field calculation for flat permanent-magnet linear machines using exact subdomain technique[J]. IEEE Transactions on Magnetics, 2021, 57 (6): 8106211
16 TANG W, XIAO L, XIA D, et al 2-D and 3-D analytical calculation of the magnetic field and levitation force between two Halbach permanent magnet arrays[J]. IEEE Transactions on Magnetics, 2021, 57 (4): 8300208
17 DU Y, ZHAO J, XIAO F, et al Partitioned stator hybrid excitation doubly salient machine with slot Halbach PM arrays[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (4): 3187- 3196
doi: 10.1109/TVT.2021.3065670
18 HALBACH K Strong rare earth cobalt quadrupoles[J]. IEEE Transactions on Nuclear Science, 1979, 26 (3): 3882- 3884
doi: 10.1109/TNS.1979.4330638
19 HALBACH K Design of permanent multipole magnets with oriented rare earth cobalt material[J]. Nuclear Instruments and Methods, 1980, 169 (1): 1- 10
doi: 10.1016/0029-554X(80)90094-4
20 杨海波, 刘枫, 李凡珠, 等 圆柱形橡胶试样压缩变形有限元分析的超弹性本构方程对比研究[J]. 橡胶工业, 2018, 65 (10): 1085- 1093
YANG Hai-bo, LIU Feng, LI Fan-zhu, et al Finite element analysis of compressive deformation for cylindrical rubber components based on hyperelastic constitutive models[J]. China Rubber Industry, 2018, 65 (10): 1085- 1093
doi: 10.3969/j.issn.1000-890X.2018.10.001
[1] 李健,戴楚彦,王扬威,郭艳玲,查富生. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版), 2022, 56(6): 1088-1096, 1134.
[2] 李吉冬,钟莹,李醒飞. 磁流体动力学动量轮的致动特性和影响因素[J]. 浙江大学学报(工学版), 2021, 55(9): 1676-1683.
[3] 林苗,居勇健,孟刚,王琨,曹毅. 大行程两自由度微定位夹持系统的设计与优化[J]. 浙江大学学报(工学版), 2021, 55(7): 1234-1244.
[4] 费飞,刘申宇,吴常铖,杨德华,周升丽. 基于磁悬浮结构的人体动能采集技术[J]. 浙江大学学报(工学版), 2019, 53(11): 2215-2222.
[5] 曲巍崴, 石鑫, 董辉跃, 封璞加, 朱灵盛, 柯映林. 气动锤铆过程仿真分析与试验[J]. 浙江大学学报(工学版), 2014, 48(8): 1411-1418.
[6] 张雷, 邬义杰, 王彬, 刘孝亮. 基于正交建模的空间柔顺构件多目标优化[J]. J4, 2012, 46(8): 1419-1423.
[7] 袁平 柯映林 董辉跃. 基于次摆线轨迹的铝合金高速铣削有限元仿真[J]. J4, 2009, 43(3): 570-577.
[8] 宣海军 吴荣仁 童水光. VED支承转子的模态频率及稳定性研究[J]. J4, 2005, 39(11): 1779-1782.