Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1127-1134    DOI: 10.3785/j.issn.1008-973X.2022.06.009
智能机器人     
用于康复训练的分段式气动软体驱动器
刘彩霞1,2(),潘亭亭2,孙一帆2,李帅2,刘平2,黄英2,*()
1. 合肥工业大学 物理学院,安徽 合肥 230601
2. 合肥工业大学 微电子学院,安徽 合肥 230601
Segmented pneumatic soft actuator for rehabilitation training
Cai-xia LIU1,2(),Ting-ting PAN2,Yi-fan SUN2,Shuai LI2,Ping LIU2,Ying HUANG2,*()
1. School of Physics, Hefei University of Technology, Hefei 230601, China
2. School of Microelectronics, Hefei University of Technology, Hefei 230601, China
 全文: PDF(1917 KB)   HTML
摘要:

针对手指康复训练中软体驱动器贴合度低、灵活性差、运动传递不准确等问题,基于仿生原理设计分段式气动软体驱动器. 通过3个具有锯齿结构半波纹管气囊实现软体驱动器的分段弯曲,嵌入柔性应变传感器实现软体驱动器本体感知. 建立半波纹管气囊弯曲变形数学模型,借助有限元分析对半波纹管气囊进行分析,研究壁厚、波纹宽度、波距和波纹数目对该气囊弯曲性能和末端输出力的影响,选取软体驱动器尺寸参数. 采用3D打印技术及失蜡铸造工艺,制作分段独立驱动的软体驱动器. 特性测试结果表明:分段式软体驱动器最大弯曲角度为302°,末端输出力为3.33 N,能够带动手指进行分关节康复训练,内嵌的柔性应变传感器可以实时监测软体驱动器弯曲状态.

关键词: 软体驱动器气动式有限元分析柔性应变传感器手指康复    
Abstract:

A segmented pneumatic soft actuator was designed based on the bionic principle for the problems of low fit, low flexibility, and inaccurate movement transmission of soft actuators in finger rehabilitation training. Segmented bending of the soft actuator was realized by three semi-bellows airbags with serrated structure, and the flexible strain sensors were embedded to achieve the proprioception of soft actuator. The bending deformation mathematical model of semi-bellows airbags were established, and the semi-bellows airbags were analyzed by finite element analysis. The influences of wall thickness, wave width, wave distance and ripple number on the airbags’ bending performance and terminal output force were studied, and the dimension parameters of soft actuator were selected. The soft actuator was fabricated using 3D printing technology and lost wax casting process. The characteristic test results of the soft actuator show that the maximum bending angle of the segmented soft actuator was 302°, and the terminal output force was 3.33 N, the finger was moved to do joint rehabilitation training, and the bending state of the soft actuator was monitored in real time through the flexible strain sensor.

Key words: soft actuator    pneumatic    finite element analysis    flexible strain sensor    finger rehabilitation
收稿日期: 2022-03-02 出版日期: 2022-06-30
CLC:  TP 24  
基金资助: 浙江省科技厅“领雁”研发攻关计划项目(2022C03052);中央高校基本科研业务费专项资金资助项目(JZ2020HGTB0027,JZ2020HGQA0166)
通讯作者: 黄英     E-mail: hgdliucaixia@163.com;hf.hy@163.com
作者简介: 刘彩霞(1975—),女,副教授,从事敏感电子学与传感技术研究. orcid.org/0000-0001-5291-8399. E-mail: hgdliucaixia@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘彩霞
潘亭亭
孙一帆
李帅
刘平
黄英

引用本文:

刘彩霞,潘亭亭,孙一帆,李帅,刘平,黄英. 用于康复训练的分段式气动软体驱动器[J]. 浙江大学学报(工学版), 2022, 56(6): 1127-1134.

Cai-xia LIU,Ting-ting PAN,Yi-fan SUN,Shuai LI,Ping LIU,Ying HUANG. Segmented pneumatic soft actuator for rehabilitation training. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1127-1134.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.009        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1127

图 1  软体驱动器的结构设计
关节 运动方向 θIF/(°)
掌指关节 屈曲 0~90
近端指间关节 屈曲 0~100
远端指间关节 屈曲 0~80
表 1  食指各关节的运动范围
图 2  半波纹管气囊的尺寸标注
图 3  半波纹管气囊弯曲状态图
图 4  不同壁厚时半波纹管气囊的仿真结果
图 5  不同波纹宽度时半波纹管气囊的仿真结果
图 6  不同波距时半波纹管气囊的仿真结果
图 7  不同波纹数目时半波纹管气囊的仿真结果
图 8  软体驱动器仿真位移云图
图 9  软体驱动器的制作流程
图 10  软体驱动器特性测试
图 11  软体驱动器与传感器间的测试
图 12  软体驱动器康复应用
1 国家心血管病中心. 中国心血管健康与疾病报告2019[R]. 北京: 科学出版社, 2020: 243-245.
2 贾杰 脑卒中后手功能康复现状[J]. 老年医学与保健, 2015, 21 (3): 129- 131
JIA Jie Status of hand functional rehabilitation after cerebral apoplexy[J]. Geriatrics and Health Care, 2015, 21 (3): 129- 131
3 SUSANTO E A, TONG R K Y, HO N S K Hand exoskeleton robot for assessing hand and finger motor impairment after stroke[J]. HKIE Transactions, 2015, 22 (2): 78- 87
doi: 10.1080/1023697X.2015.1038319
4 UEKI S, KAWASAKI H, ITO S, et al Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17 (1): 136- 146
doi: 10.1109/TMECH.2010.2090353
5 吴枫, 韩亚丽, 李沈炎, 等 柔性仿生驱动器研究综述[J]. 现代制造工程, 2020, (7): 146- 156
WU Feng, HAN Ya-li, LI Shen-yan, et al Review of soft-bionic actuator[J]. Modern Manufacturing Engineering, 2020, (7): 146- 156
6 ISHIDA M, DROTMAN D, SHIH B, et al Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot[J]. IEEE Robotics and Automation Letters, 2019, 4 (4): 4163- 4169
doi: 10.1109/LRA.2019.2931263
7 POLYGERINOS P, LYNE S, WANG Z, et al. Towards a soft pneumatic glove for hand rehabilitation [C]// 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo: IEEE, 2013: 1512-1517.
8 KANG B B, CHOI H, LEE H, et al. Exo-glove poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system [J]. Soft Robotics. 2019, 6(2): 214-227.
9 XIANG C Q, YANG H, SUN Z Y, et al The design, hysteresis modeling and control of a novel SMA-fishing-line actuator[J]. Smart Material Structures, 2017, 26 (3): 037004
doi: 10.1088/1361-665X/aa5b03
10 YAP H K, LIM J H, NASRALLAH F, et al Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors[J]. Frontiers in Neuroscience, 2017, 11: 547
doi: 10.3389/fnins.2017.00547
11 CAPPELLO L, MEYER J T, GALLOWAY K C, et al Assisting hand function after spinal cord injury with a fabric-based soft robotic glove[J]. Journal of Neuroengineering and Rehabilitation, 2018, 15: 59
doi: 10.1186/s12984-018-0391-x
12 SUN Z S, GUO Z H, TANG W Design of wearable hand rehabilitation glove with soft hoop-reinforced pneumatic actuator[J]. Journal of Central South University, 2019, 26: 106- 119
doi: 10.1007/s11771-019-3986-x
13 POLYGERINOS P, WANG Z, GALLOWAY K C, et al Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135- 143
doi: 10.1016/j.robot.2014.08.014
14 YAP H K, LIM J H, NASRALLAH F, et al. A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness [C]// 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle: IEEE, 2015, 4967-4972.
15 WANG J B, FEI Y Q, PANG W Design, modeling, and testing of a soft pneumatic glove with segmented PneuNets bending actuators[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24 (3): 990- 1001
doi: 10.1109/TMECH.2019.2911992
16 戴红. 人体运动学[M]. 北京: 人民卫生出版社, 2008: 103-115.
17 陈家照, 黄闽翔, 王学仁, 等 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报, 2015, 29 (Suppl.1): 118- 120
CHEN jia-zhao, HUANG min-xiang, WANG xue-ren, et al Typical constitutive models of rubber materials and their ranges of application[J]. Materials Reports, 2015, 29 (Suppl.1): 118- 120
18 殷闻, 靳晓雄, 仝光 两种常用橡胶本构模型的有限元分析及其仿真[J]. 上海电机学院学报, 2010, 13 (4): 215- 218
YIN Wen, JIN Xiao-xiong, TONG Guang Finite element analysis of rubber constitutive models and simulation[J]. Journal of Shanghai Dianji University, 2010, 13 (4): 215- 218
doi: 10.3969/j.issn.2095-0020.2010.04.007
19 燕山, 王伟 橡胶类超弹性本构模型中材料参数的确定[J]. 橡胶工业, 2014, 61 (8): 453- 457
YAN Shan, WANG Wei Determination of material parameters for rubberlike hyperelastic constitutive models[J]. China Rubber Industry, 2014, 61 (8): 453- 457
doi: 10.3969/j.issn.1000-890X.2014.08.001
20 ALICI G, CANTY T, MUTLU R, et al Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers[J]. Soft Robotics, 2018, 5 (1): 24- 35
doi: 10.1089/soro.2016.0052
21 齐开乐 软体弯曲驱动器设计与建模分析[J]. 洛阳理工学院学报: 自然科学版, 2021, 31 (3): 60- 65
QI kai-le Design and modeling analysis of a soft bending actuator[J]. Journal of Luoyang Institute of Science and Technology: Natural Science Edition, 2021, 31 (3): 60- 65
[1] 王洁,李钊,李子然. 全钢载重子午线轮胎胎面磨耗行为研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1615-1624.
[2] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[3] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.
[4] 黄铭枫,魏歆蕊,叶何凯,叶建云,楼文娟. 大跨越钢管塔双平臂抱杆的风致响应[J]. 浙江大学学报(工学版), 2021, 55(7): 1351-1360.
[5] 蒋君侠,廖海鹏. 重载智能堆垛装备刚度建模与结构优化[J]. 浙江大学学报(工学版), 2021, 55(10): 1948-1959.
[6] 沈国辉,包玉南,郭勇,宋刚,王轶文. 输电线顺线路方向风荷载及分配模式[J]. 浙江大学学报(工学版), 2020, 54(9): 1658-1665.
[7] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705.
[8] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[9] 陈勇,李泳全,谢重磊,钱匡亮,张叶胜,程鹏允,叶轩佐. 钢管束剪力墙约束下砌体结构推覆试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 499-511.
[10] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[11] 童水光,苗嘉智,童哲铭,何顺,相曙锋,帅向辉. 内燃叉车车架静动特性有限元分析及优化[J]. 浙江大学学报(工学版), 2019, 53(9): 1637-1646.
[12] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[13] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[14] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284.
[15] 夏永强, 肖南. T形钢连接梁柱半刚性节点初始转动刚度计算公式[J]. 浙江大学学报(工学版), 2018, 52(10): 1935-1942.