Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (3): 598-605    DOI: 10.3785/j.issn.1008-973X.2023.03.018
土木工程     
具有杆间扭转约束的轴心压杆稳定性研究
陈廷国(),郭召迪
大连理工大学 建设工程学部 土木工程学院,辽宁 大连 116024
Stability of axial compression bars with inter-bar torsional constraints
Ting-guo CHEN(),Zhao-di GUO
School of Civil Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(2067 KB)   HTML
摘要:

针对具有杆间扭转约束的轴心压杆稳定性问题,进行理论推导. 简化工程模型为理论模型,求解两端固定压杆的稳定承载力,提出稳定承载力与杆间扭转弹簧刚度的关系公式. 以理论模型为基础,用横梁代替扭转弹簧,使用杆间横梁支撑压杆进行失稳试验,调整横梁截面以改变横梁抗扭刚度. 进行6组不同抗扭刚度下的杆件稳定承载力试验,试验结果验证了理论解的正确性. 建立有限元模型,依据试验结果对模型可靠性进行验证,基于经过验证的有限元模型进行12种工况下的算例分析,并与理论曲线比较. 试验和有限元结果验证了理论解的正确性,提出了可供工程设计使用的计算公式.

关键词: 压杆扭转约束稳定性有限元分析    
Abstract:

Theoretical derivation was conducted for the stability of axial compression bars with inter-bar torsional constraints. A theoretical model was established by simplifying engineering examples, the stability bearing capacity of compression bars with fixed ends was solved, and the relationship formula between buckling load and torsional spring stiffness of inter-bar was put forward. According to the theoretical model, the torsional spring was replaced by a beam, and then the buckling test was carried out using the beam as the support of the compression bar. The torsional stiffness of the beam was altered through changing its cross section. Six groups of compression bars having different torsional stiffness were tested to verify the correctness of the theoretical solution. A finite element model was also established, and its reliability was verified by the test results. Based on the verified finite element model, the analysis of twelve cases was carried out, and compared with the theoretical curve. The correctness of the theoretical solution was demonstrated by experiments and finite element analysis, and a promising calculation formula was put forward for engineering design.

Key words: compression bar    torsional constraint    stability    finite element analysis
收稿日期: 2022-03-17 出版日期: 2023-03-31
CLC:  TU 391  
作者简介: 陈廷国(1957—),男,教授,博士,从事大型及新型工程结构力学分析及实验研究. orcid.org/0000-0002-4768-5065.E-mail: chentg@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈廷国
郭召迪

引用本文:

陈廷国,郭召迪. 具有杆间扭转约束的轴心压杆稳定性研究[J]. 浙江大学学报(工学版), 2023, 57(3): 598-605.

Ting-guo CHEN,Zhao-di GUO. Stability of axial compression bars with inter-bar torsional constraints. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 598-605.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.03.018        https://www.zjujournals.com/eng/CN/Y2023/V57/I3/598

图 1  简化的钢塔架局部受力模型
图 2  压杆理论模型
图 3  扭转弹簧约束下侧的隔离体
图 4  包含扭转弹簧的隔离体
图 5  压杆稳定承载力与扭转弹簧刚度关系曲线
图 6  试验压杆
图 7  杆间横梁支撑
图 8  具有杆间横梁支撑的两端固定压杆
图 9  具有杆间横梁支撑的两端固定压杆试验模型对应的理论模型
图 10  压杆拉伸试验
试验编号 E/GPa $ \nu $ G/GPa
1 202 0.306 77
2 204 0.298 79
3 206 0.301 79
平均值 204 0.302 78
表 1  压杆拉伸试验结果
图 11  MX-1模型失稳形态
图 12  MX-1模型横梁扭转
图 13  MX-1荷载位移曲线
模型编号 横梁截面尺寸/mm GJ/(N·m) Pe/kN
n=1 n=2 n=3 平均值
MX-1 Φ10×1 274 18.47 18.52 18.59 18.53
MX-2 Φ22×1 3 446 23.56 23.25 22.82 23.21
MX-3 Φ22×2 6 000 24.99 25.76 25.78 25.51
MX-4 Φ26×2 10 336 26.97 27.63 28.27 27.62
MX-5 Φ26×4 16 336 29.07 29.35 29.35 29.26
MX-6 Φ26×8 20 744 30.51 29.99 31.10 30.53
表 2  不同试验模型压杆试件的稳定承载力
模型编号 $ \gamma $ $ \eta $ Pe/kN Pt/kN e/%
MX-1 0.07 2.90 18.53 20.61 +11.2
MX-2 0.88 3.22 23.21 25.42 +9.5
MX-3 1.53 3.37 25.51 27.84 +9.1
MX-4 2.64 3.54 27.62 30.72 +11.2
MX-5 4.17 3.67 29.26 33.01 +12.8
MX-6 5.29 3.73 30.53 34.10 +11.7
表 3  不同试验模型的压杆承载力试验值与理论值对比
图 14  6组试验模型的失稳荷载
图 15  具有杆间横梁支撑的压杆
试验编号 Pe/kN Pt/kN Pf /kN ef /% et /%
MX-1 18.53 20.61 20.82 +12.4 +11.2
MX-2 23.21 25.42 25.95 +11.8 +9.5
MX-3 25.51 27.84 28.62 +12.2 +9.1
MX-4 27.62 30.72 31.50 +14.0 +11.2
MX-5 29.26 33.01 33.74 +15.3 +12.8
MX-6 30.53 34.10 34.75 +13.8 +11.7
表 4  不同试验模型压杆承载力的试验值、理论值与有限元值对比
c/(N·m) $\gamma $ Pt/kN Pf/kN e/%
0.000 1 0 20.29 20.25 ?0.2
1 984 0.5 23.66 23.59 ?0.3
3 968 1 26.19 26.12 ?0.3
7 936 2 29.66 29.56 ?0.3
11 904 3 31.82 31.71 ?0.3
15 872 4 33.26 33.14 ?0.4
23 808 6 35.02 34.89 ?0.4
35 712 9 36.41 36.27 ?0.4
51 584 13 37.35 37.20 ?0.4
79 360 20 38.12 37.97 ?0.4
3 968 000 1 000 39.66 39.48 ?0.5
3 968 000 000 1 000 000 39.68 39.51 ?0.4
表 5  压杆承载力在不同弹簧刚度下的理论解和有限元解对比
图 16  压杆承载力理论曲线与有限元曲线对比
1 王祖能. 具有杆间弹性支撑的端部固定压杆稳定性研究[D]. 大连: 大连理工大学, 2019.
WANG Zu-neng. Stability of a two fixed-ends bar with middle elastic support [D]. Dalian: Dalian University of Technology, 2019.
2 谢鹏. 多边形钢塔架局部模型稳定性研究[D]. 大连: 大连理工大学, 2018.
XIE Peng. Research on the stability of local model of polygonal steel tower [D]. Dalian: Dalian University of Technology, 2018.
3 TIMOSHENKO S P, GERE J M. Theory of elastic stability [M]. New York: McGraw-Hill, 1961.
4 FOSTER A S J, GARDNER L Ultimate behavior of continuous steel beams with discrete lateral restraints[J]. Thin-Walled Structures, 2015, 88: 58- 69
doi: 10.1016/j.tws.2014.11.018
5 王述红, 姚骞, 张超, 等 基于稳定函数的支撑结构系统临界力计算方法[J]. 东北大学学报: 自然科学版, 2021, 42 (10): 1475- 1482
WANG Shu-hong, YAO Qian, ZHANG chao, et al Calculation method of the critical force of support structure system based on stability function[J]. Journal of Northeastern University: Natural Science, 2021, 42 (10): 1475- 1482
6 石永久, 余香林, 班慧勇, 等 高性能结构钢材与钢结构体系研究与应用[J]. 建筑结构, 2021, 51 (17): 145- 151
SHI Yong-jiu, YU Xiang-lin, BAN Hui-yong, et al Research and application on high performance structural steel and its structural system[J]. Building Structure, 2021, 51 (17): 145- 151
doi: 10.19701/j.jzjg.2021.17.021
7 班慧勇, 赵平宇, 周国浩, 等 复合型高性能钢材轴压构件整体稳定性能研究[J]. 土木工程学报, 2021, 54 (9): 39- 55
BAN Hui-yong, ZHAO Ping-yu, ZHOU Guo-hao, et al Research on overall buckling behavior of superior high-performance steel columns[J]. China Civil Engineering Journal, 2021, 54 (9): 39- 55
doi: 10.15951/j.tmgcxb.2021.09.011
8 BLEICH F. Buckling strength of metal structures [M]. New York: McGraw-Hill, 1952.
9 PENG J L Experiment and stability analysis on heavy-duty scaffold systems with top shores[J]. Advanced Steel Construction, 2017, 13: 293- 317
10 刘占科, 靳璐君, 周绪红, 等 钢构件整体稳定直接分析法研究现状及展望[J]. 建筑结构学报, 2021, 42 (8): 1- 12
LIU Zhan-ke, JIN Lu-jun, ZHOU Xu-hong, et al State-of-the-art on research of direct analysis method of steel members with global instability[J]. Journal of Building Structures, 2021, 42 (8): 1- 12
doi: 10.14006/j.jzjgxb.2020.C335
11 于春海, 陈芳芳, 谢强, 等 Q420高强度角钢轴心受压承载力试验研究[J]. 建筑结构, 2020, 50 (3): 100- 104
YU Chun-hai, CHEN Fang-fang, XIE Qiang, et al Experimental study on bearing capacity of Q420 high-strength angle steel under axial compression[J]. Building Structure, 2020, 50 (3): 100- 104
doi: 10.19701/j.jzjg.2020.03.018
12 聂诗东, 戴国欣, 沈乐, 等 Q345GJ钢(中)厚板H形及箱形柱残余应力与轴压稳定承载力分析[J]. 工程力学, 2017, 34 (12): 171- 182
NIE Shi-dong, DAI Guo-xin, SHEN Le, et al Residual stress distribution and overall stability load-carrying capacities of H-shaped and box section columns welded by Q345GJ structural steel plates under axial compression[J]. Engineering Mechanics, 2017, 34 (12): 171- 182
13 宁克洋, 杨璐, 赵梦晗 不锈钢压弯构件整体稳定性能有限元研究与承载力计算方法[J]. 工程力学, 2019, 36 (12): 113- 120
NING Ke-yang, YANG Lu, ZHAO Meng-han Fe research on the overall stability of stainless-steel beam-columns and calculation method of bearing capacity[J]. Engineering Mechanics, 2019, 36 (12): 113- 120
doi: 10.6052/j.issn.1000-4750.2018.12.0705
14 PENG J L, WANG C S, WANG S H, et al Study on stability and design guidelines for the combined system of scaffolds and shores[J]. Steel and Composite Structures, 2020, 35 (3): 385- 404
15 DOU C, PI Y L Effects of geometric imperfections on flexural buckling resistance of laterally braced columns[J]. Journal of Structural Engineers, 2016, 142 (9): 04016048
doi: 10.1061/(ASCE)ST.1943-541X.0001508
16 WINTER G Lateral bracing of columns and beams[J]. Journal of the Structural Division, 1958, 84 (2): 807- 825
17 班慧勇, 施刚, 石永久 Q420高强度等边角钢轴压构件整体稳定性能设计方法研究[J]. 工程力学, 2014, 31 (3): 63- 71
BAN Hui-yong, SHI Gang, SHI Yong-jiu Investigation on design method of overall bucking behavior for Q420 high strength steel equal-leg angle members under axial compression[J]. Engineering Mechanics, 2014, 31 (3): 63- 71
18 童根树, 邢国然 剪切型支撑框架弹塑性失稳模式判定准则[J]. 浙江大学学报: 工学版, 2007, 41 (7): 1136- 1142
TONG Gen-shu, XING Guo-ran Determination of buckling mode for elastic-plastic braced frames[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (7): 1136- 1142
19 中国钢铁工业协会. 结构用无缝钢管: GB/T 8162—2018 [S]. 北京: [s. n.], 2018.
[1] 庄启彬,张焕彬,刘志荣,朱睿. 不同构型潜射航行器倾斜出水流场演化特性[J]. 浙江大学学报(工学版), 2023, 57(1): 200-208.
[2] 刘彩霞,潘亭亭,孙一帆,李帅,刘平,黄英. 用于康复训练的分段式气动软体驱动器[J]. 浙江大学学报(工学版), 2022, 56(6): 1127-1134.
[3] 周傲,王斌,李洁涛,周欣,夏文俊. 太湖隧道软土基坑长期稳定性分析与变形预测[J]. 浙江大学学报(工学版), 2022, 56(4): 692-701.
[4] 张朝,黄正东,熊仲明,原晓露,许有俊,康佳旺. 地裂缝环境下钢筋混凝土框架结构的地震响应[J]. 浙江大学学报(工学版), 2022, 56(10): 2028-2036.
[5] 武恩宇,钱国栋,李斌. 铝基金属-有机框架材料的水吸附性能与大气集水应用[J]. 浙江大学学报(工学版), 2022, 56(1): 186-192.
[6] 王洁,李钊,李子然. 全钢载重子午线轮胎胎面磨耗行为研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1615-1624.
[7] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[8] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.
[9] 汪佳佳,蔡英凤,陈龙,汪少华,施德华. 基于扩张状态观测器估计的混合动力汽车协调控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1225-1233.
[10] 沈佳轶,库猛,王立忠. 基于剪切带扩展法的海底斜坡稳定性分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1299-1307.
[11] 黄铭枫,魏歆蕊,叶何凯,叶建云,楼文娟. 大跨越钢管塔双平臂抱杆的风致响应[J]. 浙江大学学报(工学版), 2021, 55(7): 1351-1360.
[12] 李曦,胡健,姚建勇,魏科鹏,王鹏飞,邢浩晨. 基于观测器摩擦补偿的机电系统高精度控制[J]. 浙江大学学报(工学版), 2021, 55(6): 1150-1158.
[13] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[14] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[15] 蒋君侠,廖海鹏. 重载智能堆垛装备刚度建模与结构优化[J]. 浙江大学学报(工学版), 2021, 55(10): 1948-1959.