Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 200-208    DOI: 10.3785/j.issn.1008-973X.2023.01.020
航空航天技术     
不同构型潜射航行器倾斜出水流场演化特性
庄启彬(),张焕彬,刘志荣,朱睿*()
厦门大学 航空航天学院,福建 厦门 361005
Water flow field evolution characteristics of oblique water-exit process for different shapes underwater launched vehicles
Qi-bin ZHUANG(),Huan-bin ZHANG,Zhi-rong LIU,Rui ZHU*()
School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
 全文: PDF(1786 KB)   HTML
摘要:

研究头部构型、发射角度、发射速度对潜射航行器跨介质出水载荷及水流场演化特性的影响. 基于潜射航行器跨介质出水弹射试验及数值仿真数据,采用统计学相关分析与跨介质水动力、水流场演变特性相结合的方式,揭示各试验影响因素对航行器跨介质水流场特性的影响及机理. 研究结果表明,各因素影响航行器跨介质稳定性的程度关系为:头部构型 > 发射角度 > 发射速度. 影响潜射航行器跨介质出水载荷及水流场演化稳定特性的因素如下:1)头部构型差异引起流场脱落涡强度与脱落涡频率的不同,影响了湍动能耗散(最大耗散为0.075 J);2)发射角度不同引起了航行器运动状态与分力的改变;3)发射速度不同引起的初始动能不同诱发跨介质动能耗散不一.

关键词: 潜射航行器跨介质稳定性湍动能头部构型    
Abstract:

The impact of the head shape, launch angle and launch velocity on the evolution of the trans-phase load and flow field characteristics of a submersible launch vehicle was analyzed. Statistical correlation analysis was used to combine the hydrodynamic and flow-field evolution properties of the vehicle based on data from water-to-air tests and numerical simulations of a submersible launch vehicle in order to reveal the effect of each experimental factor on the water flow characteristics of the trans-phase vehicle and its mechanisms. Results show that the factors affecting the degree of trans-phase stability of the vehicle are: head shape > launch angle > launch velocity. The factors that affect the trans-phase load and flow field evolution stability of the submersible launch vehicle were as follows. 1) The intensity and frequency of flow field shedding vortex caused by the difference of head shape affected the turbulent kinetic energy dissipation (maximum dissipation was 0.075 J). 2) Different launch angles caused changes in vehicle motion state and component force. 3) Different initial kinetic energy caused by different launch velocities induced different trans-phase kinetic energy dissipation.

Key words: submersible launch vehicle    trans-phase    stability    turbulence kinetic energy    head shape
收稿日期: 2022-06-24 出版日期: 2023-01-17
CLC:  V 217  
基金资助: “十三· 五” 装备预研领域基金资助项目(61402060405);福建省自然科学基金资助项目(2022J01058)
通讯作者: 朱睿     E-mail: 13290989198@163.com;zhurui@xmu.edu.cn
作者简介: 庄启彬(1996—),男,博士生,从事柔性传感及实验流体研究. orcid.org/0000-0003-3650-3243 E-mail: 13290989198@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
庄启彬
张焕彬
刘志荣
朱睿

引用本文:

庄启彬,张焕彬,刘志荣,朱睿. 不同构型潜射航行器倾斜出水流场演化特性[J]. 浙江大学学报(工学版), 2023, 57(1): 200-208.

Qi-bin ZHUANG,Huan-bin ZHANG,Zhi-rong LIU,Rui ZHU. Water flow field evolution characteristics of oblique water-exit process for different shapes underwater launched vehicles. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 200-208.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.020        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/200

图 1  潜射航行器跨介质试验
材质 d/mm L/mm Vs/cm3 ρ/ (kg·m?3) m/g
304不锈钢 6 30 8.48×10?1 8×103 68
表 1  航行器模型的参数
图 2  潜射航行器跨介质瞬时图像(70°发射)
VL/(m·s?1) θL/(°) 头部构型 Δθ/(°)
3.0 70 1 3.72
3.0 80 1 3.09
4.0 70 1 3.04
4.0 80 1 2.67
5.0 70 1 2.58
5.0 80 1 2.11
3.0 70 2 3.21
3.0 80 2 2.63
4.0 70 3 2.64
4.0 80 3 2.20
5.0 70 4 1.40
5.0 80 4 0.70
表 2  航行器跨介质偏转角变化量的试验数据
图 3  计算域及网格划分
图 4  试验\数值运动轨迹的校验
图 5  线性相关分析
图 6  偏相关分析
图 7  航行器载荷演化
图 8  跨介质压力云图
图 9  航行器表面压力系数的演化
图 10  跨介质瞬时头部压力的分布
图 11  速度环量和湍动能
图 12  壁面剪切力、湍动能的演化
图 13  航行器的动能演化
1 BRETON T, TASSIN A, JACQUES N Experimental investigation of the water entry and/or exit of axisymmetric bodies[J]. Journal of Fluid Mechanics, 2020, 901: 37
doi: 10.1017/jfm.2020.559
2 DAYTON J W, POETTGEN B K, CETEGEN B M Non-isothermal mixing characteristics in the extreme near-field of turbulent jets in hot crossflow: effects of jet exit turbulence and velocity profile[J]. Physics of Fluids, 2020, 32 (11): 115114
3 KRISTENSEN H M, NORRIS R S Chinese nuclear forces, 2015[J]. Bulletin of the Atomic Scientists, 2015, 71 (4): 77- 84
doi: 10.1177/0096340215591247
4 MA Z, HU J, FENG J, et al. A longitudinal air–water trans-media dynamic model for slender vehicles under low-speed condition. Nonlinear Dynamics, 2020, 99(2): 1195-1210.
5 NAIR V V, BHATTACHARYYA S K Water entry and exit of axisymmetric bodies by CFD approach[J]. Journal of Ocean Engineering and Science, 2018, 3 (2): 156- 174
doi: 10.1016/j.joes.2018.05.002
6 KIM N, PARK H Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions[J]. Journal of Fluid Mechanics, 2019, 863: 757- 788
doi: 10.1017/jfm.2018.1026
7 HAO H H, SONG Y P, YU J Y, et al Numerical analysis of water exit for a sphere with constant velocity using the lattice Boltzmann method[J]. Applied Ocean Research, 2019, 84 (12): 163- 178
8 GUO C, LIU T, HAO H, et al Evolution of water column pulled by partially submerged spheres with different velocities and submergence depths[J]. Ocean Engineering, 2019, 187 (5): 106087
9 孙士丽, 孙义龙, 胡竞中, 等 圆柱体出水运动的自由面效应及水冢现象分析[J]. 计算物理, 2013, 30 (2): 187- 193
SUN Shi-li, SUN Yi-long, HU Jing-zhong, et al Free surface effect and spike of a cylinder piercing water surface[J]. Chinese Journal of Computational Physics, 2013, 30 (2): 187- 193
doi: 10.3969/j.issn.1001-246X.2013.02.004
10 魏海鹏, 符松 不同多相流模型在航行体出水流场数值模拟中的应用[J]. 振动与冲击, 2015, 34 (4): 48- 52
WEI Hai-peng, FU Song Multiphase models for flow field numerical simulation of a vehicle rising from water[J]. Journal of Vibration and Shock, 2015, 34 (4): 48- 52
doi: 10.13465/j.cnki.jvs.2015.04.009
11 赵蛟龙 细长体倾斜出水的实验研究[J]. 爆炸与冲击, 2016, 36 (1): 113- 119
ZHAO Jiao-long Experimental study on oblique water-exit of slender bodies[J]. Explosion and Shock Waves, 2016, 36 (1): 113- 119
doi: 10.11883/1001-1455(2016)01-0113-08
12 赵蛟龙. 航行体出入水空泡载荷特性及缩比试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2016: 45-50.
ZHAO Jiao-long. Fluid dynamics and experimental investigation on the cavitation characteristics of the water-exit and -entry process of underwater vehicle [D]. Harbin: Harbin Engineering University, 2016: 45-50.
13 廖保全 附加质量变化率在航行体出水过程中的影响研究[J]. 计算力学学报, 2017, 34 (1): 95- 100
LIAO Bao-quan Influence on rate of change of added mass for an underwater vehicle during its water exit process[J]. Chinese Journal of Computational Mechanics, 2017, 34 (1): 95- 100
doi: 10.7511/jslx201701013
14 张晓强, 冯金富, 吝科, 等 跨介质运动物体的附加质量[J]. 北京航空航天大学学报, 2016, 42 (4): 821- 828
ZHANG Xiao-qiang, FENG Jin-fu, LIN-Ke, et al Added mass of trans-media moving object[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (4): 821- 828
doi: 10.13700/j.bh.1001-5965.2015.0478
15 陈林烽 基于 Navier-Stokes 方程残差的隐式大涡模拟有限元模型[J]. 力学学报, 2020, 52 (5): 1314- 1322
CHEN Lin-feng A residual based unresolved-scale finite element modelling for implicit large eddy simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (5): 1314- 1322
doi: 10.6052/0459-1879-20-055
16 吴霆, 时北极, 王士召, 等 大涡模拟的壁模型及其应用[J]. 力学学报, 2018, 50 (3): 453- 466
WU Ting, SHI Bei-ji, WANG Shi-zhao, et al Wall model for large-eddy simulation and its applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (3): 453- 466
doi: 10.6052/0459-1879-18-071
17 王建丽, 张渭育. 统计学[M]. 北京: 清华大学出版社, 2010: 215-220.
18 李晓斌, 郭小威, 袁刚 基于逻辑靶场技术的导弹内外场联合试验训练系统[J]. 兵工自动化, 2019, 38 (6): 9- 13
LI Xiao-bin, GUO Xiao-wei, YUAN Gang Infield and airfield joint testing and training system of missile based on logical range technology[J]. Ordnance Industry Automation, 2019, 38 (6): 9- 13
doi: 10.7690/bgzdh.2019.06.002
19 施红辉. 流体力学入门[M]. 杭州: 浙江大学出版社, 2013: 108-109.
20 刘志荣, 邹赫, 刘锦生, 等 开缝圆柱缝隙倾斜角对脱落涡的影响[J]. 北京航空航天大学学报, 2017, 43 (1): 8
LIU Zhi-rong, ZOU He, LIU Jin-sheng, et al Effect of angle of slit on shedding vortex of slotted circular cylinder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (1): 8
doi: 10.13700/j.bh.1001-5965.2016.0058
21 郑益华. 基于翠鸟界面润湿控制行为的跨介质航行器表面防浸润研究[D]. 吉林: 吉林大学, 2020: 129-130.
ZHENG Yi-hua. Research on the anti-wetting of aquatic UAV surface based on the wetting control behavior of kingfisher interface [D]. Jilin: Jilin University, 2020: 129-130.
[1] 周傲,王斌,李洁涛,周欣,夏文俊. 太湖隧道软土基坑长期稳定性分析与变形预测[J]. 浙江大学学报(工学版), 2022, 56(4): 692-701.
[2] 武恩宇,钱国栋,李斌. 铝基金属-有机框架材料的水吸附性能与大气集水应用[J]. 浙江大学学报(工学版), 2022, 56(1): 186-192.
[3] 汪佳佳,蔡英凤,陈龙,汪少华,施德华. 基于扩张状态观测器估计的混合动力汽车协调控制[J]. 浙江大学学报(工学版), 2021, 55(7): 1225-1233.
[4] 沈佳轶,库猛,王立忠. 基于剪切带扩展法的海底斜坡稳定性分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1299-1307.
[5] 李曦,胡健,姚建勇,魏科鹏,王鹏飞,邢浩晨. 基于观测器摩擦补偿的机电系统高精度控制[J]. 浙江大学学报(工学版), 2021, 55(6): 1150-1158.
[6] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[7] 冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.
[8] 王慧芳,张晨宇. 采用极限梯度提升算法的电力系统电压稳定裕度预测[J]. 浙江大学学报(工学版), 2020, 54(3): 606-613.
[9] 云忠,温猛,罗自荣,陈龙. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54(2): 407-415.
[10] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.
[11] 王郭俊,许洪国,刘宏飞. 双半挂汽车列车操纵稳定性分析[J]. 浙江大学学报(工学版), 2019, 53(2): 299-306.
[12] 袁海辉,葛一敏,甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报(工学版), 2019, 53(11): 2049-2057.
[13] 王悦荟,刘聪,王鹏飞,许忠斌,阮晓东,付新. 蒸汽发生器致畸变入流对核主泵流动性能的影响[J]. 浙江大学学报(工学版), 2019, 53(11): 2076-2084.
[14] 夏超英,吴刚,于佳丽. 基于一致渐近稳定观测器的模块化多电平变流器控制系统设计[J]. 浙江大学学报(工学版), 2019, 53(11): 2238-2247.
[15] 朱谢联,董石麟. 六杆四面体双曲面冷却塔网壳的构形、静力与稳定性能[J]. 浙江大学学报(工学版), 2019, 53(10): 1907-1915.