Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1402-1409    DOI: 10.3785/j.issn.1008-973X.2023.07.015
土木工程     
新型高强硅酸盐墙板钢框架抗震性能
谢国庆1(),王密2,*(),孔德文1
1. 贵州大学 土木工程学院,贵州 贵阳 550025
2. 中南大学 土木工程学院,湖南 长沙 410083
Seismic performance of steel frame with new high strength silicate wallboard
Guo-qing XIE1(),Mi WANG2,*(),De-wen KONG1
1. College of Civil Engineering, Guizhou University, Guiyang 550025, China
2. School of Civil Engineering, Central South University, Changsha 410083, China
 全文: PDF(2445 KB)   HTML
摘要:

为了分析新型高强硅酸盐墙板对钢框架结构抗震性能的影响,开展2榀单层单跨足尺钢框架拟静力试验. 将内嵌墙板钢框架试件和纯钢框架试件进行对比,得到在水平低周往复荷载作用下试件的破坏形态和墙板对钢框架结构抗震性能的影响. 试验结果表明,新型高强硅酸盐墙板钢框架结构具有良好的抗震性能,通过内嵌墙板增加了钢框架结构的承载能力、延性和耗能能力. 采用有限元分析方法对试验进行数值模拟,有限元分析结果与试验吻合较好. 对试验的高跨比、轴压比和墙板厚度进行参变分析可知,改变高跨比对结构抗震性能的影响较大,建议高跨比取值为0.50~0.75. 轴压比对结构的承载能力影响较大,建议轴压比取值小于0.4. 改变墙体厚度对结构的初始刚度影响不大,对结构承载能力有一定的影响.

关键词: 钢框架新型高强硅酸盐墙板破坏模式抗震性能有限元分析    
Abstract:

Two single-story single-span full-scale steel frame pseudo-static tests were conducted in order to analyze the influence of new high-strength silicate wall panels on the seismic performance of steel frame structures. The steel frame specimens with embedded wall panels were compared with pure steel frame specimens. The failure mode of the specimens and the effect of wall panels on the seismic performance of steel frame structures were obtained under horizontal low-cycle reciprocating loads. The test results showed that the new high-strength silicate wallboard steel frame structure had good seismic performance, and the bearing capacity, ductility and energy dissipation capacity of the steel frame structure were increased by the embedded wallboard. The numerical simulation of the test was conducted by finite element analysis method, and the results of finite element analysis agreed with the test. The parametric analysis of the height-span ratio, axial compression ratio and wall panel thickness of the test shows that changing the height-span ratio has a greater impact on the seismic performance of the structure. The recommended value of the height-span ratio is 0.50-0.75. The axial compression ratio has a great influence on the bearing capacity of the structure, and it is recommended that the axial compression ratio is less than 0.4. Changing the thickness of the wall has little effect on the initial stiffness of the structure, but has a certain effect on the bearing capacity of the structure.

Key words: steel frame    new high-strength silicate wallboard    failure mode    seismic performance    finite element analysis
收稿日期: 2022-07-27 出版日期: 2023-07-17
CLC:  TU 391  
基金资助: 国家自然科学基金资助项目(51968009);贵州省科技计划资助项目([2018] 2816)
通讯作者: 王密     E-mail: xieguoqing0912@126.com;214801008@csu.edu.cn
作者简介: 谢国庆(1995—),男,硕士,从事装配式钢结构、新型建筑材料的研究. orcid.org/0000-0002-5643-7397. E-mail: xieguoqing0912@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
谢国庆
王密
孔德文

引用本文:

谢国庆,王密,孔德文. 新型高强硅酸盐墙板钢框架抗震性能[J]. 浙江大学学报(工学版), 2023, 57(7): 1402-1409.

Guo-qing XIE,Mi WANG,De-wen KONG. Seismic performance of steel frame with new high strength silicate wallboard. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1402-1409.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.015        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1402

图 1  试件尺寸和安装过程
图 2  钢材材性试验装置
试件编号 fy/MPa fu/MPa Es/GPa γ
梁翼缘 290 432 2.02×105 0.29
梁腹板 314 420 1.96×105 0.27
连接板 312 425 2.03×105 0.24
钢 柱 298 420 2.04×105 0.28
表 1  钢材材性的试验结果
图 3  试件测点布置的示意图
图 4  试验加载装置
图 5  KJ-1试验现象[26]
图 6  KJ-2试验现象
图 7  试件的滞回曲线
图 8  试件骨架曲线的对比
编号 加载方向 Δy Δu $ {\theta _{\text{y}}} $/mrad $ {\theta _{\text{u}}} $/mrad $ \mu $ ${\mu _{\theta } }$
KJ-1 正向 44.0 146 19.6 66.7 3.3 3.3
KJ-1 反向 ?45.9 ?109.9 20.4 50.0 2.4 2.4
KJ-2 正向 65.8 137.4 29.4 66.7 2.1 2.1
KJ-2 反向 ?60.5 ?141.9 27.0 62.5 2.3 2.3
表 2  低周循环加载下试件的力学性能
图 9  试件刚度退化曲线的对比
图 10  荷载-位移曲线滞回环
Δ/Δy KJ-1 KJ-2
W/(kN·mm) E W/(kN·mm) E
1 390 0.293 1261 0.314
2 7524 0.566 12138 0.711
3 22058 0.938 34108 1.071
4 37706 1.206 50599 1.219
表 3  耗能指标
图 11  KJ-2网格模型
图 12  试件的滞回曲线对比
图 13  试件的骨架曲线对比
图 14  不同高跨比下试件的骨架曲线对比
图 15  不同轴压比下试件的骨架曲线对比
图 16  不同墙体厚度下试件的骨架曲线对比
17 WANG J, LI B Cyclic testing of square CFST frames with ALC panel or block walls[J]. Journal of Constructional Steel Research, 2017, 130: 264- 279
doi: 10.1016/j.jcsr.2016.12.006
18 ISHIDA T, TENDERAN R, KOHTAKI K, et al Experimental study on full-scale steel moment-resisting frames with nonstructural walls subjected to multiple earthquakes[J]. Engineering Structures, 2021, 242: 112549
doi: 10.1016/j.engstruct.2021.112549
19 CAO W, WANG R, YIN F, et al Seismic performance of a steel frame assembled with a CFST-bordered composite wall structure[J]. Engineering Structures, 2020, 219: 110853
doi: 10.1016/j.engstruct.2020.110853
20 HOU H, CHOU C, ZHOU J, et al Cyclic tests of steel frames with composite lightweight infill walls[J]. Earthquakes and Structures, 2016, 10 (1): 163- 78
doi: 10.12989/eas.2016.10.1.163
21 BAI L, HOU C, CAO M, et al Cyclic performance of steel moment frames with prefabricated RC and ECC wall panels[J]. Engineering Structures, 2021, 242: 112492
doi: 10.1016/j.engstruct.2021.112492
22 中华人民共和国建设部. 建筑隔墙用轻质条板通用技术要求: JG/T 169—2016 [S]. 北京: 中国标准出版社, 2016.
23 中国国家标准化管理委员会. 金属材料拉伸试验第一部分: 室温试验方法: GB/T 228.1—2010 [S]. 北京: 中国标准出版社, 2010.
24 中国国家标准化管理委员会. 钢及钢材产品力学性能试验取样位置及试样制备: GB/T 2975—2018 [S]. 北京: 中国标准出版社, 2018.
25 中华人民共和国国家标准. 建筑抗震试验方法规程: JGJ/T 101—2015 [S]. 北京: 中国建筑工业出版社, 2015.
26 谢国庆, 付汝宾, 任虎, 等 低周往复荷载作用下的Q235钢框架结构抗震性能研究[J]. 中国水运(下半月), 2021, 21 (4): 142- 143
XIE Guo-qing, FU Ru-bin, REN Hu, et al Seismic performance of Q235 steel frame structures under low cycle reciprocating loads[J]. China Water Transport, 2021, 21 (4): 142- 143
27 王金昌, 陈页开. ABAQUS 在土木工程中的应用[M]. 杭州: 浙江大学出版社, 2006.
1 ZHANG Y, LI D Development and testing of precast concrete-filled square steel tube column-to-RC beam connections under cyclic loading[J]. Construction and Building Materials, 2021, 280 (19): 1- 16
2 宋慧慧, 王静峰, 丁兆东, 等 内嵌预制SVMFC夹芯复合墙板钢框架结构数值分析[J]. 合肥工业大学学报: 自然科学版, 2020, 43 (11): 1538- 1543
SONG Hui-hui, WANG Jing-feng, DIGN Zhao-dong, et al. Numerical analysis of steel frames with embedded precast steel-grid vitrified microsphere foamed concrete sandwich composite wall panels[J]. Journal of Hefei University of Technology: Natural Science Edition, 2020, 43 (11): 1538- 1543
3 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011―2010 [S]. 北京: 中国建筑工业出版社, 2010.
4 李晓东, 康永康, 宋子阳, 等 纤维石膏基复合墙板轻钢框架抗震性能分析[J]. 哈尔滨工程大学学报, 2020, 41 (12): 1797- 1803
LI Xiao-dong, KANG Yong-kang, SONG Zi-yang, et al Seismic behavior of lightweight steel frame with fiber gypsum-based composite wallboard[J]. Journal of Harbin Engineering University, 2020, 41 (12): 1797- 1803
5 杨伟, 侯爽, 欧进萍 从汶川地震分析填充墙对结构整体抗震能力影响[J]. 大连理工大学学报, 2009, 49 (5): 770- 775
YANG Wei, HOU Shuang, OU Jin-ping Analysis of the influence of infilled wall on the overall seismic capacity of structure from Wenchuan earthquake[J]. Journal of Dalian University of Technology, 2009, 49 (5): 770- 775
doi: 10.7511/dllgxb200905024
6 ZHANG C, LI Z, HUANG W, et al. Seismic performance of semi-rigid steel frame infilled with prefabricated damping wall panels[J]. Journal of Constructional Steel Research, 2021, 184: 106797
doi: 10.1016/j.jcsr.2021.106797
7 DU D, WANG S, LI W, et al. Seismic performance of the pre-fabricated steel frame infilled with AAC wall panels and their joint connection: full-scale shaking table test[J]. Journal of Earthquake and Tsunami, 2019, 13 (3): 1940004
8 DE M G Effect of lightweight cladding panels on the seismic performance of moment resisting steel frames[J]. Engineering Structures, 2005, 27 (11): 1662- 1676
doi: 10.1016/j.engstruct.2005.06.004
9 谢国庆, 任虎, 罗双, 等 预制高强硅酸盐墙板力学性能试验研究[J]. 混凝土与水泥制品, 2021, 56 (10): 71- 75
XIE Guo-qing, REN Hu, LUO Shuang, et al. Experimental study on mechanical properties of prefabricated high-strength silicate wallboard[J]. Concrete and Cement Products, 2021, 56 (10): 71- 75
10 ACHAL V, PAN X, ÖZYURT N Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation[J]. Ecological Engineering, 2011, 37 (4): 554- 559
doi: 10.1016/j.ecoleng.2010.11.009
11 SHAIKH F, DOBSON J Effect of fly ash on compressive strength and chloride binding of seawater-mixed mortars[J]. Journal of Sustainable Cement-Based Materials, 2019, 8 (5): 275- 289
doi: 10.1080/21650373.2019.1582370
12 JAYANTA C, SULAGNO B Replacement of cement by fly ash in concrete[J]. International Journal of Civil Engineering, 2016, 3 (8): 40- 42
13 HEFNI Y, ZAHER Y, WAHAB M Influence of activation of fly ash on the mechanical properties of concrete[J]. Construction and Building Materials, 2018, 172: 728- 734
doi: 10.1016/j.conbuildmat.2018.04.021
14 SHAO Y, HAO S, LUO Y, et al Investigation of durability of wall materials concrete prepared with fly ash[J]. Applied Mechanics and Materials, 2012, 174: 657- 661
15 LI Z, HE M, WANG X, et al. Seismic performance assessment of steel frame infilled with prefabricated wood shear walls [J]. Journal of Constructional Steel Research, 2018, 140: 62-73.
[1] 赵国臣,徐龙军,杜佳俊,朱敬洲,朱兴吉,谢礼立. 脉冲型地震动作用下钢框架结构地震需求概率模型[J]. 浙江大学学报(工学版), 2023, 57(6): 1080-1089.
[2] 焦志安,魏建鹏,郭杨,戴良军,田黎敏. 新型可恢复功能半刚性节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1090-1099.
[3] 佘振扬,黎雅乐,李雪红,徐秀丽,刘径恺. 带耗能系梁的摇摆自复位双肢薄壁高墩抗震性能研究[J]. 浙江大学学报(工学版), 2023, 57(5): 977-987.
[4] 鲍佳文,高强,唐林,赵唯坚. 钢筋套筒灌浆连接拉伸性能的精细有限元分析[J]. 浙江大学学报(工学版), 2023, 57(4): 814-823.
[5] 陈廷国,郭召迪. 具有杆间扭转约束的轴心压杆稳定性研究[J]. 浙江大学学报(工学版), 2023, 57(3): 598-605.
[6] 鲁海波,张广泰,刘诗拓,李雪藩,韩霞. 盐渍土环境下聚丙烯纤维混凝土柱抗震性能[J]. 浙江大学学报(工学版), 2023, 57(1): 111-121.
[7] 刘彩霞,潘亭亭,孙一帆,李帅,刘平,黄英. 用于康复训练的分段式气动软体驱动器[J]. 浙江大学学报(工学版), 2022, 56(6): 1127-1134.
[8] 邓明科,靳梦娜,郭莉英,马福栋,刘华政. 超高性能混凝土连接装配式柱抗震性能试验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 1995-2006.
[9] 张朝,黄正东,熊仲明,原晓露,许有俊,康佳旺. 地裂缝环境下钢筋混凝土框架结构的地震响应[J]. 浙江大学学报(工学版), 2022, 56(10): 2028-2036.
[10] 王洁,李钊,李子然. 全钢载重子午线轮胎胎面磨耗行为研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1615-1624.
[11] 李通,王新武,时强,布欣,孙海粟. 可替换式偏心支撑钢框架抗震性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1725-1733.
[12] 王威,赵昊田,权超超,宋鸿来,李昱,周毅香. 墙趾可更换竖波钢板剪力墙抗剪承载力[J]. 浙江大学学报(工学版), 2021, 55(8): 1407-1418.
[13] 冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.
[14] 曾星宇,李俊阳,王家序,唐挺,李聪. 基于有限元法的谐波双圆弧齿廓设计和修形[J]. 浙江大学学报(工学版), 2021, 55(8): 1548-1557.
[15] 黄铭枫,魏歆蕊,叶何凯,叶建云,楼文娟. 大跨越钢管塔双平臂抱杆的风致响应[J]. 浙江大学学报(工学版), 2021, 55(7): 1351-1360.