Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (1): 111-121    DOI: 10.3785/j.issn.1008-973X.2023.01.012
土木工程     
盐渍土环境下聚丙烯纤维混凝土柱抗震性能
鲁海波1(),张广泰1,2,*(),刘诗拓1,李雪藩1,韩霞1
1. 新疆大学 建筑工程学院,新疆 乌鲁木齐 830046
2. 新疆建筑结构与抗震重点实验室,新疆 乌鲁木齐 830046
Seismic behavior of polypropylene fiber concrete column in saline soil environment
Hai-bo LU1(),Guang-tai ZHANG1,2,*(),Shi-tuo LIU1,Xue-fan LI1,Xia HAN1
1. College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830046, China
2. Xinjiang Key Laboratory of Building Structures and Earthquake Resistance, Urumqi 830046, China
 全文: PDF(3512 KB)   HTML
摘要:

为了研究盐渍土环境耦合荷载下聚丙烯纤维锂渣混凝土(PLiC)柱的抗震性能,以侵蚀天数、轴压比、耦合应力比为主要变量,设计并制作8根PLiC柱试件和3根钢筋混凝土(RC)柱试件. 采用8.3%(质量分数)NaCl+10%(质量分数)Na2SO4的溶液,浸泡施加持续荷载后的试件. 在浸泡侵蚀完成后,分别对11根试件进行低周往复循环荷载试验,分析各试件的破坏模式、滞回曲线、骨架曲线、延性及刚度退化等,明确PLiC柱和RC柱在不同变量下延性及耗能能力的变化规律. 结果表明,PLiC柱的耐盐渍土侵蚀性能优于RC柱. 随着侵蚀时间的增加,PLiC柱和RC柱耗能能力均出现先下降后上升的趋势,延性均持续下降,PLiC柱的下降幅值小于RC柱. 当轴压比从0.2增加至0.3时,PLiC柱在相同加载位移时的总耗能增大. 随着耦合应力比的增大,试件的耗能、刚度退化均呈现下降的趋势.

关键词: 盐渍土环境耦合荷载作用聚丙烯纤维锂渣混凝土(PLiC)低周往复荷载抗震性能    
Abstract:

Eight polypropylene fiber lithium slag concrete (PLiC) columns and three reinforced concrete (RC) columns were designed and manufactured with the days of erosion, axial compression ratio and coupling stress ratio as the main variables in order to analyze the seismic performance of PLiC columns under coupled loads in saline soil environment. A solution with a mass fraction of 8.3% NaCl+10% Na2SO4 was used to soak the specimens after applying a continuous load. Eleven specimens were subjected to low-cycle cyclic load tests respectively, and the failure modes, hysteresis curves, skeleton curves, ductility and stiffness degradation of each specimen were analyzed after the immersion erosion was completed. The variation rules of ductility and energy dissipation capacity of PLiC column and RC column under different variables were clarified. Results show that PLiC column is better than RC column in salt soil erosion resistance. The energy dissipation capacity of PLiC column and RC column decreases firstly and then increases with the increase of erosion time, and ductility continuously decreases, while the decreasing amplitude of PLiC column is smaller than that of RC column. The total energy dissipation of PLiC column increases with the same loading displacement when the axial compression ratio increases from 0.2 to 0.3. The energy dissipation and stiffness degradation of the specimen decrease with the increase of coupling stress ratio.

Key words: coupled loads in saline soil environment    polypropylene fiber lithium slag concrete (PLiC)    low-cycle cyclic load    seismic performance
收稿日期: 2021-10-04 出版日期: 2023-01-17
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(51968070)
通讯作者: 张广泰     E-mail: 1550185515@qq.com;zgtlxh@126.com
作者简介: 鲁海波(1997—),男,硕士生,从事新型混凝土材料的研究. orcid.org/0000-0002-0009-3919. E-mail: 1550185515@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
鲁海波
张广泰
刘诗拓
李雪藩
韩霞

引用本文:

鲁海波,张广泰,刘诗拓,李雪藩,韩霞. 盐渍土环境下聚丙烯纤维混凝土柱抗震性能[J]. 浙江大学学报(工学版), 2023, 57(1): 111-121.

Hai-bo LU,Guang-tai ZHANG,Shi-tuo LIU,Xue-fan LI,Xia HAN. Seismic behavior of polypropylene fiber concrete column in saline soil environment. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 111-121.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.01.012        https://www.zjujournals.com/eng/CN/Y2023/V57/I1/111

图 1  试件的几何尺寸及配筋详图
试件编号 Dσ n t/d
RC-0-0.2-0 0 0.2 0
PLiC-0-0.2-0 0 0.2 0
PLiC-0-0.3-0 0 0.3 0
RC-0.2-0.2-90 0.2 0.2 90
PLiC-0.2-0.2-90 0.2 0.2 90
PLiC-0.2-0.3-90 0.2 0.3 90
PLiC-0.1-0.2-90 0.1 0.2 90
PLiC-0.35-0.2-90 0.35 0.2 90
RC-0.2-0.2-180 0.2 0.2 180
PLiC-0.2-0.2-180 0.2 0.2 180
PLiC-0.2-0.3-180 0.2 0.3 180
表 1  构件的主要参数
图 2  荷载装置及盐溶液耦合荷载的示意图
试块
种类
$\varphi_{\rm{p}} $/% $\varphi _{\rm{l}} $/% ρc/
(kg·m?3)
ρg/
(kg·m?3)
ρs/
(kg·m?3)
ρw/
(kg·m?3)
ρr/
(kg·m?3)
RC 0 0 261 1360 657 98.4 2.6
PLiC 0.1092 20 209 1360 657 98.4 2.6
表 2  混凝土的配合比
化学成分 wB 化学成分 wB
SiO2 54.39 SO3 8.30
Li2O 0.77 Na2O 0.26
MgO 0.24 Fe2O3 1.40
K2O 0.14 Al2O3 19.83
CaO 7.98
表 3  锂渣的化学成分
纤维类型 D/μm ρ/(g·cm?3) l/mm e/GPa Rm/MPa
聚丙烯 33 0.91 19 > 3.5 530
表 4  聚丙烯纤维的物理性能
图 3  加载装置
图 4  盐溶液侵蚀后的RC柱和PLiC柱表面
图 5  RC柱和PLiC柱的裂缝图
图 6  RC柱和PLiC柱的滞回曲线
图 7  RC柱和PLiC柱的骨架曲线
试件编号 方向 Py/kN Δy/mm Pmax/kN Δmax/mm Pu/kN Δu/mm μ
RC-0.2-0 反向 87.95 13.18 95.6 24.80 81.26 32.98 2.97
RC-0.2-0 正向 82.29 8.847 94.2 19.30 80.03 30.33 2.97
PLiC-0-0.2-0 反向 91.44 13.68 96.9 19.25 82.37 37.04 3.54
PLiC-0-0.2-0 正向 77.42 7.01 88.7 11.00 75.40 30.62 3.54
PLiC-0-0.3-0 反向 84.00 11.00 92.8 33.00 92.80 33.00 3.19
PLiC-0-0.3-0 正向 103.96 9.74 116.2 16.50 98.10 33.00 3.19
RC-0.2-0.2-90 反向 75.63 14.80 85.5 33.10 72.67 41.36 2.88
RC-0.2-0.2-90 正向 68.65 12.26 78.7 16.54 66.90 36.41 2.88
PLiC-0.1-0.2-90 反向 96.50 12.22 102.8 18.99 87.37 41.17 3.50
PLiC-0.1-0.2-90 正向 83.95 8.70 100.3 16.58 85.25 31.59 3.50
PLiC-0.2-0.2-90 反向 76.42 8.21 85.7 13.79 78.20 31.59 3.26
PLiC-0.2-0.2-90 正向 81.75 12.57 94.5 21.96 80.20 33.63 3.26
PLiC-0.35-0.2-90 反向 88.13 14.23 95.00 30.25 89.70 44.00 2.80
PLiC-0.35-0.2-90 正向 85.83 14.02 104.4 19.25 88.74 35.27 2.80
PLiC-0.2-0.3-90 反向 81.67 11.95 95.9 24.75 87.20 35.75 2.40
PLiC-0.2-0.3-90 正向 89.37 19.76 107.3 27.50 101.50 35.75 2.40
RC-0.2-0.2-180 反向 82.34 15.01 100.0 24.82 85.00 36.57 2.83
RC-0.2-0.2-180 正向 83.96 8.45 100.4 16.14 85.34 29.06 2.83
PLiC-0.2-0.2-180 反向 82.35 17.64 98.1 41.45 96.70 47.10 3.11
PLiC-0.2-0.2-180 正向 81.53 10.04 93.5 16.40 80.33 35.71 3.11
PLiC-0.2-0.3-180 反向 89.20 11.09 101.8 19.25 86.53 20.46 2.03
PLiC-0.2-0.3-180 正向 102.51 9.75 118.0 13.75 100.3 21.55 2.03
表 5  构件的延性系数
图 8  RC柱和PLiC柱的耗能曲线
图 9  RC柱和PLiC柱的刚度退化曲线
1 郑山锁, 张艺欣, 裴培, 等 冻融循环作用下钢筋混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2020, 41 (6): 84- 91
ZHENG Shan-suo, ZHANG Yi-xin, PEI Pei, et al Experimental study on seismic behavior of reinforced concrete columns under freeze-thaw cycles[J]. Journal of Building Structures, 2020, 41 (6): 84- 91
doi: 10.14006/j.jzjgxb.2017.0838
2 李耀, 尹世平, 刘鸣, 等 氯盐干湿循环次数对TRC加固RC柱抗震性能影响[J]. 建筑结构学报, 2019, 40 (4): 94- 103
LI Yao, YIN Shi-ping, LIU Ming, et al Influence of chloride drying and wetting cycles on seismic performance of TRC reinforced RC columns[J]. Journal of Building Structures, 2019, 40 (4): 94- 103
doi: 10.14006/j.jzjgxb.2019.04.010
3 王成, 葛广华, 侯建国, 等 南疆地区混凝土结构耐久性现状与影响因素研究[J]. 武汉大学学报:工学版, 2017, 50 (3): 447- 453
WANG Cheng, GE Guang-hua, HOU Jian-guo, et al Research on the status and influencing factors of durability of concrete structures in southern Xinjiang[J]. Journal of Wuhan University: Engineering Science, 2017, 50 (3): 447- 453
4 赵建军, 闫长旺, 刘曙光, 等 盐渍土环境中RC桥墩柱地震损伤试验研究与计算分析[J]. 防灾减灾工程学报, 2020, 40 (3): 467- 475
ZHAO Jian-jun, YAN Chang-wang, LIU Shu-guang, et al Experimental study andcalculation analysis of seismic damage of RC bridge piers in saline soil environment[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40 (3): 467- 475
doi: 10.13409/j.cnki.jdpme.2020.03.020
5 林德源, 易博, 陈云翔, 等 盐渍土环境下钢筋混凝土腐蚀的研究进展[J]. 材料导报, 2014, 28 (6): 137- 141
LIN De-yuan, YI Bo, CHEN Yun-xiang, et al Research progress on corrosion of reinforced concrete in saline soil[J]. Materials Review, 2014, 28 (6): 137- 141
6 权长青, 焦楚杰, 杨云英, 等 混杂纤维混凝土力学性能的正交试验研究[J]. 建筑材料学报, 2019, 22 (3): 363- 370
QUAN Chang-qing, JIAO Chu-jie, YANG Yun-ying, et al Orthogonal experimental study on mechanical properties of hybrid fiber reinforced concrete[J]. Journal of Building Materials, 2019, 22 (3): 363- 370
doi: 10.3969/j.issn.1007-9629.2019.03.006
7 ARASH K, MANSOUR G, DE JORGE B, et al The effect of polypropylene fibers on the compressive strength impact and heat resistance of self-compacting concrete[J]. Structures, 2020, 25 (2): 72- 87
8 LIU J L, JIA Y M, WANG J Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete[J]. Fibers and Polymers, 2019, 20 (9): 1900- 1908
doi: 10.1007/s12221-019-1028-9
9 SAADUN A, AZRULA M, HAMID R, et al Behaviour of polypropylene fiber reinforced concrete under dynamic impact load[J]. Journal of Engineering Science and Technology, 2016, 11 (5): .684- 693
10 徐礼华, 黄彪, 李彪, 等 循环荷载作用下聚丙烯纤维混凝土受压应力-应变关系研究[J]. 土木工程学报, 2019, 52 (4): 1- 12
XU Li-hua, HUANG Biao, LI Biao, et al Study on stress-strain relationship of polypropylene fiber concrete under cyclic loading[J]. China Civil Engineering Journal, 2019, 52 (4): 1- 12
doi: 10.15951/j.tmgcxb.2019.04.001
11 梁宁慧, 严如, 田硕, 等 预加荷载下聚丙烯纤维混凝土抗渗机理研究[J]. 湖南大学学报:自然科学版, 2021, 48 (9): 155- 162
LIANG Ning-hui, YAN Ru, TIAN Shuo, et al Study on anti-permeability Mechanism of PFRC under preloading[J]. Journal of Hunan University: Natural Science Edition, 2021, 48 (9): 155- 162
12 张喜娥 锂渣对混凝土徐变的影响[J]. 硅酸盐通报, 2018, 37 (3): 856- 860
ZHANG Xi-e Effect of lithium slag on creep of concrete[J]. Bulletin of Ceramics, 2018, 37 (3): 856- 860
doi: 10.16552/j.cnki.issn1001-1625.2018.03.018
13 冷发光, 马孝轩, 丁威, 等 滨海盐渍土环境中暴露17 年的钢筋混凝土桩耐久性分析[J]. 建筑结构, 2011, 41 (11): 148- 151
LENG Fa-guang, MA Xiao-xuan, DING Wei, et al Analysis of durability of reinforced concrete piles exposed in coastal saline soil for 17 years[J]. Building Structures, 2011, 41 (11): 148- 151
14 王成, 葛广华, 黎亮, 等 南疆盐渍土地区混凝土抗冻性能研究[J]. 长江科学院院报, 2017, 34 (5): 125- 130
WANG Cheng, GE Guang-hua, LI Liang, et al Study on frost resistance of concrete in saline soil area of Southern Xinjiang[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34 (5): 125- 130
doi: 10.11988/ckyyb.20170031
15 郝贠洪, 江南, 樊金承, 等 盐渍土环境抗腐蚀性能研究[J]. 混凝土, 2016, (8): 8- 10
HAO Yun-hong, JIANG Nan, FAN Jin-cheng, et al Study on corrosion resistance of saline soil[J]. Concrete, 2016, (8): 8- 10
doi: 10.3969/j.issn.1002-3550.2016.08.002
16 逄锦伟 冻融循环作用下锂渣混凝土抗硫酸盐侵蚀研究[J]. 硅酸盐通报, 2019, 38 (1): 304- 309
PANG Jin-wei Study on the resistance of lithium slag concrete to sulfate erosion under freeze-thaw cycles[J]. Bulletin of the Chinese Ceramic Society, 2019, 38 (1): 304- 309
doi: 10.16552/j.cnki.issn1001-1625.2019.01.050
17 许开成, 陈子超, 聂行, 等 模拟酸雨环境下掺锂渣钢筋混凝土梁抗弯性能试验研究[J]. 工业建筑, 2018, 48 (3): 21- 25
XU Kai-cheng, CHEN Zi-chao, NIE Hang, et al Experimental study on flexural performance of reinforced concrete beams mixed with lithium slag in simulated acid rain environment[J]. Industrial Building, 2018, 48 (3): 21- 25
doi: 10.13204/j.gyjz201803005
18 郝津津. 聚丙烯纤维增强混凝土异形柱边节点试验研究[D]. 天津: 天津大学, 2010.
HAO Jin-jin. Experimental research on side joints of polypropylene fiber reinforced concrete [D]. Tianjin: Tianjin University, 2010.
19 韩建平, 刘文林 高轴压比配筋PVA纤维增强混凝土柱抗震性能试验研究[J]. 工程力学, 2017, 34 (9): 193- 201
HAN Jian-ping, LIU Wen-lin Experimental study on seismic performance of reinforced PVA fiber reinforced concrete column with high axial compression ratio[J]. Engineering Mechanics, 2017, 34 (9): 193- 201
doi: 10.6052/j.issn.1000-4750.2016.04.0256
20 SIVAKUMAR N, ANANTHI G, BEULAH G, et al An evaluation study on amalgamation and performance of fiber reinforced concrete frames with infills and without infills[J]. Materials Today: Proceedings, 2021, 37 (8): 2360- 2367
21 乔治. ECC/RC组合框架结构抗震性能试验与理论研究[D]. 南京: 东南大学, 2019.
George. Experimental and theoretical research on seismic performance of ECC/RC composite frame structures [D]. Nanjing: Southeast University, 2019.
22 池跃升. 新疆吐鲁番地区盐渍土特性的试验研究与分析[C]// 2018年全国工程地质学术年会论文集. 西安: 科学出版社, 2018: 10-14.
CHI Yue-sheng. Experimental study and analysis of saline soil properties in the Turpan area of Xinjiang [C]// Proceedings of the 2018 National Academic Conference on Engineering Geology. Xi'an: Science Press, 2018: 10-14.
23 李保亮. 水泥-镍渣-锂渣二元及三元复合胶凝材料的水化机理及耐久性[D]. 南京: 东南大学, 2019.
LI Bao-liang. Hydration mechanism and durability of binary and ternary composite cement incorporating ferronickel slag and lithium slag [D]. Nanjing: Southeast University, 2019.
24 乔宏霞, 朱彬荣, 陈丁山 西宁盐渍土地区混凝土劣化机理试验研究[J]. 应用基础与工程科学学报, 2017, 25 (4): 805- 815
QIAO Hong-xia, ZHU Bin-rong, CHEN Ding-shan Experimental study on concrete deterioration mechanism in saline soil area of Xining[J]. Journal of Basic Science and Engineering, 2017, 25 (4): 805- 815
doi: 10.16058/j.issn.1005-0930.2017.04.015
[1] 邓明科,靳梦娜,郭莉英,马福栋,刘华政. 超高性能混凝土连接装配式柱抗震性能试验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 1995-2006.
[2] 李通,王新武,时强,布欣,孙海粟. 可替换式偏心支撑钢框架抗震性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1725-1733.
[3] 冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.
[4] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[5] 褚云朋,王秀丽,姚勇. 冷弯薄壁型钢墙体-楼板节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 732-742.
[6] 徐强, 郑山锁, 李晓昇. 考虑近海环境劣化作用的钢框架节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2314-2321.
[7] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[8] 韩冬, 布欣, 王新武, 蒋沧如. 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报(工学版), 2017, 51(2): 287-296.
[9] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[10] 余志武, 彭晓丹, 国巍, 彭妙培. 装配式剪力墙U型套箍连接节点抗震性能[J]. 浙江大学学报(工学版), 2015, 49(5): 975-984.
[11] 王琼,邓华. 罕遇地震下弦支穹顶的弹塑性动力响应分析[J]. J4, 2013, 47(11): 1889-1895.
[12] 李玉荣 沈金 裘涛 孙炳楠 秦从律. 型钢混凝土梁式转换节点抗震性能研究[J]. J4, 2006, 40(1): 96-102.
[13] 秦从律 张爱晖. 基于截面纤维模型的弹塑性时程分析方法[J]. J4, 2005, 39(7): 1003-1008.