Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (10): 1995-2006    DOI: 10.3785/j.issn.1008-973X.2022.10.011
土木工程、交通工程、海洋工程     
超高性能混凝土连接装配式柱抗震性能试验研究
邓明科1,2(),靳梦娜1,郭莉英1,马福栋1,3,刘华政4
1. 西安建筑科技大学 土木工程学院,陕西 西安 710055
2. 西安建筑科技大学 结构工程与抗震教育部重点实验室,陕西 西安 710055
3. 上海市建筑科学研究院有限公司 上海市工程结构安全重点实验室,上海 200032
4. 中石油华东设计院有限公司,山东 青岛 266000
Experimental study on seismic performance of ultra-high performance concrete connected precast columns
Ming-ke DENG1,2(),Meng-na JIN1,Li-ying GUO1,Fu-dong MA1,3,Hua-zheng LIU4
1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2. Key Laboratory of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi’an University of Architecture and Technology, Xi'an 710055, China
3. Shanghai Key Laboratory of Structural Safety, Shanghai Construction Research Institute Limited Company, Shanghai 200032, China
4. CNPC East China Design Institute Limited Company, Qingdao 266000, China
 全文: PDF(1692 KB)   HTML
摘要:

为了改善装配式结构中构件连接部位的抗震性能,提出采用超高性能混凝土(UHPC)连接预制柱. 设计1个普通混凝土(NC)整浇柱和6个塑性铰区采用UHPC的装配式柱,通过拟静力试验,研究轴压比、搭接长度、配箍率、搭接段配置短钢筋对试件破坏形态、滞回特性、承载力、变形能力、耗能能力等的影响. 结果表明,搭接长度为8倍钢筋直径的装配式柱的各项抗震性能均高于普通混凝土整浇试件,可以实现与现浇整体柱相同的效果. 随着搭接长度的增大,装配式柱的承载力逐渐增大,变形能力与耗能能力显著提高. 在搭接区段设置短钢筋,可以提高装配式柱的受弯承载力,改变破坏形态,使塑性铰区上移. 基于试验结果,考虑UHPC的受拉作用,提出UHPC装配式柱的正截面受弯承载力计算公式,计算值与试验值吻合较好.

关键词: 超高性能混凝土(UHPC)装配式柱抗震性能塑性铰区搭接连接    
Abstract:

Ultra-high performance concrete (UHPC) was proposed to connect precast columns in order to improve the seismic performance of member connections in precast structures. Six precast columns constructed with UHPC in plastic hinge zones and one normal concrete (NC) cast-in-place column were tested under the quasi-static tests. The effects of the axial load ratio, lap length, stirrup ratio and setting of short steel bar on failure modes, hysteretic characteristics, bearing capacity, deformation capacity and energy dissipation capacity of the specimens were analyzed. Results showed that the seismic performance of precast columns with lap length being 8 times the diameter of the steel bar was higher than that of normal concrete cast-in-place columns, which can achieve the same effect as the normal concrete cast-in-place column. The bearing capacity of precast columns gradually increases, and the deformation capacity and energy dissipation capacity significantly increase with the increase of lap length. The setting of short steel bar in the lap-splicing section can improve the flexural bearing capacity of the precast column, change the failure mode and move the plastic hinge area upward. A formula based on the test results for calculating the flexural capacity of precast columns was proposed by considering the tensile strength of UHPC, and the calculated results accorded well with the test results.

Key words: ultra-high performance concrete (UHPC)    precast column    seismic performance    plastic hinge zone    lap-splicing
收稿日期: 2021-11-11 出版日期: 2022-10-25
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(51878545);西安市科技创新计划资助项目(20191522415KYPT015JC017)
作者简介: 邓明科(1979—),男,教授,博导,从事高性能土木工程材料与新型结构的研究. orcid.org/0000-0002-9117-4625. E-mail: dengmingke@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
邓明科
靳梦娜
郭莉英
马福栋
刘华政

引用本文:

邓明科,靳梦娜,郭莉英,马福栋,刘华政. 超高性能混凝土连接装配式柱抗震性能试验研究[J]. 浙江大学学报(工学版), 2022, 56(10): 1995-2006.

Ming-ke DENG,Meng-na JIN,Li-ying GUO,Fu-dong MA,Hua-zheng LIU. Experimental study on seismic performance of ultra-high performance concrete connected precast columns. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1995-2006.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.10.011        https://www.zjujournals.com/eng/CN/Y2022/V56/I10/1995

图 1  普通混凝土柱/超高性能混凝土装配式柱的尺寸及配筋
编号 S/mm2 λt/λd 纵筋 Ls 箍筋
RCZ-1 250×250 0.33/0.75 6?20 mm 8@100 mm/50 mm
RUZ-2 250×250 0.33/0.75 6?20 mm/6?20 mm 8d 8@100 mm/50 mm
RUZ-3 250×250 0.17/0.40 6?20 mm/6?20 mm 8d 8@100 mm/50 mm
RUZ-4 250×250 0.33/0.75 6?20 mm/6?20 mm 8d 8@100 mm/160 mm
RUZ-5 250×250 0.33/0.75 6?20 mm/6?20 mm 6d 8@100 mm/50 mm
RUZ-6 250×250 0.33/0.75 6?20 mm/6?20 mm 12d 8@100 mm/50 mm
RUZ-7 250×250 0.33/0.75 6?20 mm/10?20 mm 8d 8@100 mm/50 mm
表 1  NC柱/UHPC装配式柱的设计参数
图 2  短钢筋的布置图
Vt/% fcu /MPa fc /MPa ft /MPa
2 108.13 102.35 5.21
表 2  UHPC的力学性能
钢筋级别 d/mm fy /MPa fu /MPa δ/%
HPB300 8 360 525 27
HRB400 20 470 660 16.3
表 3  钢筋的力学性能
图 3  试验装置及加载制度
图 4  NC柱/UHPC装配式柱的位移计布置
图 5  NC柱/UHPC装配式柱的破坏形态
图 6  荷载-位移滞回曲线
图 7  不同参数下的柱骨架曲线对比
试件编号 Pcr /kN Δcr /mm Py /kN Δy /mm Pm /kN Δm /mm Pu /kN Δu /mm μ
RCZ-1 60.23 2.14 132.22 8.14 154.41 16.05 131.25 31.01 3.81
RUZ-2 70.11 2.51 134.08 9.29 161.63 17.03 137.39 31.70 3.41
RUZ-3 49.81 2.01 105.49 8.42 125.12 17.03 106.35 25.88 3.07
RUZ-4 59.98 1.93 139.52 9.91 168.90 17.05 143.57 27.03 2.73
RUZ-5 70.25 2.48 130.68 8.54 156.48 17.04 133.01 27.97 3.28
RUZ-6 70.00 2.75 144.36 9.62 167.42 20.03 142.31 47.28 4.91
RUZ-7 90.03 3.71 152.41 10.51 183.37 22.02 155.86 26.95 2.56
表 4  NC柱与UHPC装配式柱的特征点试验结果
图 8  不同参数下柱的强度衰减对比
图 9  不同参数下的柱刚度退化曲线对比
试件编号 E/ (kN·m)
PPy PPm ΔΔu
RCZ-1 2.204 5.398 32.424
RUZ-2 1.952 6.591 33.474
RUZ-3 1.518 6.059 19.872
RUZ-4 2.174 6.780 22.813
RUZ-5 1.989 7.128 24.529
RUZ-6 1.596 11.061 112.539
RUZ-7 2.149 13.031 22.316
表 5  NC柱与UHPC装配式柱的累积耗能
图 10  UHPC的应力-应变曲线
图 11  柱截面应力分布图
试件编号 MUt/(kN·m) 考虑UHPC抗拉 不考虑UHPC抗拉
MUkc/(kN·m) MUkc/MUt MUbc/(kN·m) MUbc/MUt
RCZ-1 154.41 141.85 0.92
RUZ-2 161.63 155.74 0.96 136.12 0.84
RUZ-3 125.12 117.45 0.94 99.90 0.80
RUZ-4 168.90 155.74 0.92 136.12 0.81
RUZ-5 156.48 155.74 1.00 136.12 0.87
RUZ-6 167.42 155.74 0.93 136.12 0.81
RUZ-7 183.37 180.53 0.98 160.91 0.88
表 6  柱截面压弯承载力的计算值与试验值对比
1 杨曌, 吕伟, 包亮 基于螺栓连接的新型钢筋混凝土框架装配式节点抗震性能研究[J]. 工业建筑, 2019, 49 (8): 93- 99
YANG Zhao, LV Wei, BAO Liang Experimental research on seismic behavior of new RC frame assembly joints based on bolted connection[J]. Industrial Construction, 2019, 49 (8): 93- 99
doi: 10.13204/j.gyjz201908016
2 薛伟辰, 杨新磊, 王蕴 现浇柱叠合梁框架节点抗震性能试验研究[J]. 建筑结构学报, 2008, 29 (6): 9- 17
XUE Wei-chen, YANG Xin-lei, WANG Yun Experimental study on seismic behavior of different type of frame connections with composite beams and cast-in-place columns[J]. Journal of Building Structures, 2008, 29 (6): 9- 17
doi: 10.3321/j.issn:1000-6869.2008.06.002
3 李忠献, 郝永昶, 张建宇 钢筋混凝土分体柱框架梁柱中节点抗震性能的研究[J]. 建筑结构学报, 2001, (4): 55- 60
LI Zhong-xian, HAO Yong-chang, ZHANG Jian-yu Study on seismic behavior of beam column joints in RC frame with split columns[J]. Journal of Building Structures, 2001, (4): 55- 60
doi: 10.3321/j.issn:1000-6869.2001.04.010
4 JAMES K, NEIL M H Performance of precast/prestressed concrete building structure during northridge earthquake[J]. PCI Journal, 1994, (2): 38- 55
5 吴刚, 冯德成 装配式混凝土框架节点基本性能研究进展[J]. 建筑结构学报, 2018, 39 (2): 1- 16
WU Gang, FENG De-cheng Research progress on fundamental performance of precast concrete frame beam-to-column connections[J]. Journal of Building Structures, 2018, 39 (2): 1- 16
doi: 10.14006/j.jzjgxb.2018.02.001
6 TULLINI N, MINGHINI F Grouted sleeve connections used in precast reinforced concrete construction: experimental investigation of a column-to-column joint[J]. Engineering Structures, 2016, 127 (15): 784- 803
7 HU J Y, HONG W K, PARK S C Experimental investigation of precast concrete based dry mechanical column–column joints for precast concrete frames[J]. Structural Design of Tall and Special Buildings, 2017, 26 (5): 1884- 2023
8 陈俊. 预制混凝土底层柱抗震性能试验研究与分析[D]. 长沙: 湖南大学, 2016.
CHEN Jun. Experimental study and analysis of seismic performance of precast concrete bottom column [D]. Changsha: Hunan University, 2016.
9 郑清林, 王霓, 陶里, 等 套筒灌浆缺陷对装配式混凝土柱抗震性能影响的试验研究[J]. 土木工程学报, 2018, 51 (5): 75- 83
ZHENG Qing-lin, WANG Ni, TAO Li, et al Experimental study on effects of grout defects on seismic performance of assembled concrete columns[J]. Journal of Civil Engineering, 2018, 51 (5): 75- 83
doi: 10.15951/j.tmgcxb.2018.05.009
10 肖顺, 李向民, 许清风, 等. 套筒灌浆缺陷对预制混凝土柱抗震性能影响的试验研究[J]. 建筑结构学报, 2022, 43(5): 112-121.
XIAO Shun, LI Xiang-min, XU Qing-feng, et al. Experimental study on effect of sleeve grouting defects on seismic behavior of precast concrete columns [J]. Journal of Building Structures, 2022, 43(5): 112-121.
11 HASSAN A M T, JONES S W, MAHMUD G H Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2012, 37: 874- 882
doi: 10.1016/j.conbuildmat.2012.04.030
12 ROSSI P Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites[J]. Cement and Concrete Composites, 2013, 37: 246- 248
doi: 10.1016/j.cemconcomp.2012.08.005
13 ELDIEB A S Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers[J]. Materials and Design, 2009, 30 (10): 4286- 4292
doi: 10.1016/j.matdes.2009.04.024
14 贾方方. 钢筋与活性粉末混凝土黏结性能的试验研究[D]. 北京: 北京交通大学, 2013.
JIA Fang-fang. Experimental study on bond properties of steel bar and reactive powder concrete [D]. Beijing: Beijing Jiaotong University, 2013.
15 韩方玉, 刘建忠, 刘加平, 等 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33 (Supple.1): 244- 248
HAN Fang-yu, LIU Jian-zhong, LIU Jia-ping, et al Study on anchorage behavior of steel bar in ultra-high performance concrete[J]. Material Review, 2019, 33 (Supple.1): 244- 248
16 马福栋, 邓明科, 孙宏哲, 等 变形钢筋/超高性能混凝土搭接黏结性能[J]. 复合材料学报, 2021, 38 (11): 3912- 3921
MA Fu-dong, DENG Ming-ke, SUN Hong-zhe, et al Bonding properties of deformed steel bar/ultra high performance concrete[J]. Acta Materiae Compositae Sinica, 2021, 38 (11): 3912- 3921
doi: 10.13801/j.cnki.fhclxb.20201229.006
17 李莉. 活性粉末混凝土梁受力性能及设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
LI Li. Mechanical behavior and design method for reactive powder concrete beams [D]. Harbin: Harbin Institute of Technology, 2010.
18 混凝土结构设计规范: GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.
19 徐洁. 柱端局部采用纤维增强混凝土柱抗震性能研究[D]. 西安: 西安建筑科技大学, 2014.
XU Jie. Study on seismic behavior of the column with fiber-reinforced concrete in column end region [D]. Xi'an: Xi'an University of Architecture and Technology, 2014.
20 梁兴文, 康力, 车佳玲, 等 局部采用纤维增强混凝土柱的抗震性能试验与分析[J]. 工程力学, 2013, 30 (9): 243- 250
LIANG Xing-wen, KANG Li, CHE Jia-ling, et al Experiments and analyses of seismic behavior of columns with fiber-reinforced concrete in bottom region[J]. Engineering Mechanics, 2013, 30 (9): 243- 250
doi: 10.6052/j.issn.1000-4750.2012.06.0394
21 彭飞, 方志 钢筋UHPC梁正截面抗弯承载力计算方法[J]. 土木工程学报, 2021, 54 (3): 86- 97
PENG Fei, FANG Zhi Calculation method of flexural capacity of normal section of reinforced UHPC beam[J]. Journal of Civil Engineering, 2021, 54 (3): 86- 97
doi: 10.15951/j.tmgcxb.2021.03.008
22 曾翔超, 余红发 碱镁混凝土大偏心受压柱的试验研究[J]. 哈尔滨工程大学学报, 2017, 38 (6): 852- 858
ZENG Xiang-chao, YU Hong-fa Study on large eccentric compression column of basic magnesium sulfate cement concrete[J]. Journal of Harbin Engineering University, 2017, 38 (6): 852- 858
doi: 10.11990/jheu.201603105
[1] 李通,王新武,时强,布欣,孙海粟. 可替换式偏心支撑钢框架抗震性能[J]. 浙江大学学报(工学版), 2021, 55(9): 1725-1733.
[2] 冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.
[3] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[4] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[5] 褚云朋,王秀丽,姚勇. 冷弯薄壁型钢墙体-楼板节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2019, 53(4): 732-742.
[6] 徐强, 郑山锁, 李晓昇. 考虑近海环境劣化作用的钢框架节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2314-2321.
[7] 叶居东, 杨贞军, 刘国华, 姚勇. 超高性能混凝土-螺旋钢纤维拉拔力的解析解及实验验证[J]. 浙江大学学报(工学版), 2018, 52(10): 1911-1918.
[8] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[9] 韩冬, 布欣, 王新武, 蒋沧如. 空间剖分T型钢梁柱连接角柱节点抗震试验[J]. 浙江大学学报(工学版), 2017, 51(2): 287-296.
[10] 李英民, 杨龙, 刘烁宇, 罗文文. 基于可恢复指标的结构损伤机制评价方法[J]. 浙江大学学报(工学版), 2017, 51(11): 2197-2206.
[11] 余志武, 彭晓丹, 国巍, 彭妙培. 装配式剪力墙U型套箍连接节点抗震性能[J]. 浙江大学学报(工学版), 2015, 49(5): 975-984.
[12] 王琼,邓华. 罕遇地震下弦支穹顶的弹塑性动力响应分析[J]. J4, 2013, 47(11): 1889-1895.
[13] 李玉荣 沈金 裘涛 孙炳楠 秦从律. 型钢混凝土梁式转换节点抗震性能研究[J]. J4, 2006, 40(1): 96-102.
[14] 秦从律 张爱晖. 基于截面纤维模型的弹塑性时程分析方法[J]. J4, 2005, 39(7): 1003-1008.