Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1080-1089    DOI: 10.3785/j.issn.1008-973X.2023.06.003
土木工程、水利工程     
脉冲型地震动作用下钢框架结构地震需求概率模型
赵国臣1(),徐龙军1,*(),杜佳俊2,朱敬洲2,朱兴吉2,谢礼立1
1. 江汉大学 精细爆破国家重点实验室,湖北 武汉 430056
2. 哈尔滨工业大学(威海) 海洋工程学院,山东 威海 264209
Probabilistic seismic demand models for steel frame structures subjected to pulse-like ground motions
Guo-chen ZHAO1(),Long-jun XU1,*(),Jia-jun DU2,Jing-zhou ZHU2,Xing-ji ZHU2,Li-li XIE1
1. State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
2. School of Ocean Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China
 全文: PDF(1127 KB)   HTML
摘要:

基于实际脉冲型地震动数据建立钢框架结构的Abaqus有限元模型,建立钢框架结构4种形式(最大底部剪力、最大底部弯矩、最大层间位移角和顶层位移)的地震需求概率模型. 为了方便模型应用和明确模型参数的物理意义,构建模型时在规范方法和力学原理计算结果的基础上增加修正项,基于贝叶斯方法进行模型优化和参数估计. 结果表明,所建立的4种地震需求概率模型能够获取有限元数值解的无偏估计. 以最大层间位移角概率模型为例,可以得到20层钢框架结构的地震易损性曲线. 相对于普通类型地震动作用,钢框架结构在脉冲型地震动作用下的失效概率显著偏大.

关键词: 地震需求概率模型钢框架结构脉冲型地震动非线性时程分析贝叶斯方法    
Abstract:

Finite element models of steel frame structures were built by a commercial finite element software Abaqus, and the simulated seismic responses of the steel frame structures to pulse-like ground motions were used as the data to develop probabilistic seismic demand models. Four types of seismic demands were considered, including the maximum bottom shear force, the maximum bottom moment, the maximum story drift, and the top displacement of steel frame structures, and each of them was represented by a separate probabilistic model. In order to facilitate the application of the model and make the model parameters have clear physical meaning, the probabilistic seismic demand models were obtained by adding correction terms to the results obtained by code-based methods and mechanics principles. The Bayesian method was used for model optimization and parameter estimation. Results show that the four probabilistic seismic demand models can obtain the unbiased estimation of the finite element numerical value. Using the maximum story drift probability model, the seismic fragility curve of a 20-story steel frame structure was obtained. The analysis shows that the failure probability of the steel frame structure to pulse-like ground motions is significantly higher than that of ordinary ground motions.

Key words: probability seismic demand model    steel frame structure    pulse-like ground motion    nonlinear time history analysis    Bayesian method
收稿日期: 2022-05-16 出版日期: 2023-06-30
CLC:  P 315.9  
基金资助: 国家自然科学基金资助项目(51908169,U2139207);江汉大学学科特色专项项目资助(2022XKZX-ZC-01)
通讯作者: 徐龙军     E-mail: zgc011@126.com;xulongjun80@163.com
作者简介: 赵国臣(1990—),男,副教授,博士,从事地震工程研究. orcid.org/0000-0001-6995-2761. E-mail: zgc011@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵国臣
徐龙军
杜佳俊
朱敬洲
朱兴吉
谢礼立

引用本文:

赵国臣,徐龙军,杜佳俊,朱敬洲,朱兴吉,谢礼立. 脉冲型地震动作用下钢框架结构地震需求概率模型[J]. 浙江大学学报(工学版), 2023, 57(6): 1080-1089.

Guo-chen ZHAO,Long-jun XU,Jia-jun DU,Jing-zhou ZHU,Xing-ji ZHU,Li-li XIE. Probabilistic seismic demand models for steel frame structures subjected to pulse-like ground motions. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1080-1089.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.003        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1080

图 1  不同方法获取的最大底部剪力结果比较
分析步 $ {\theta _{{_{V1}}}} $ $ {\theta _{{_{V2}}}} $ $ {\theta _{{_{V3}}}} $ $ {\theta _{{_{V4}}}} $ $ {\theta _{{_{V5}}}} $ $ {\theta _{{_{V6}}}} $ $ {\theta _{{_{V7}}}} $ $ {\theta _{{_{V8}}}} $ $ {\theta _{{_{V9}}}} $ $ {\theta _{{_{V10}}}} $ $\mu{(\sigma _{ {_V} }) }$
1 0.179 0.092 0.916 0.721 0.638 0.315 0.524 0.519 0.554 0.066 0.127
2 0.139 0.092 0.650 0.781 0.279 0.460 0.465 0.537 0.068 0.128
3 0.124 0.093 0.613 0.236 0.311 0.238 0.427 0.067 0.128
4 0.057 0.093 0.274 0.289 0.212 0.449 0.068 0.130
5 0.056 0.095 0.351 0.329 0.224 0.070 0.133
6 0.059 0.104 0.129 0.110 0.072 0.136
7 0.076 0.100 0.245 0.050 0.165
表 1  最大底部剪力概率模型优化过程各参数变异系数和模型标准差均值
参数 μ σ ρ
$ {\theta _{_{{V2}}}} $ $ {\theta _{_{{V7}}}} $ $ {\theta _{_{{V10}}}} $ $ {\sigma _{{_V}}} $
$ {\theta _{_{{V2}}}} $ ?0.023 2 0.002 4 1.00
$ {\theta _{_{{V7}}}} $ ?0.003 9 0.000 5 ?0.26 1.00
$ {\theta _{_{{V10}}}} $ ?0.144 8 0.010 4 0.42 ?0.64 1.000
${\sigma _{{_V} } }$ 0.136 1 0.008 6 ?0.02 0.01 ?0.004 1.0
表 2  最大底部剪力概率模型参数的后验分布信息
图 2  不同方法获取的最大底部弯矩结果比较
参数 μ σ ρ
$ {\theta _{_{{M2}}}} $ $ {\theta _{_{{M10}}}} $ $ {\sigma _{_{{M}}}} $
$ {\theta _{_{{M2}}}} $ ?0.0151 0.0032 1.000
$ {\theta _{_{{M10}}}} $ 0.3426 0.0423 0.590 1.00
$ {\sigma _{_{{M}}}} $ 0.1626 0.0086 0.001 0.02 1.0
表 3  最大底部弯矩概率模型参数后验分布信息
图 3  不同方法获取的最大层间位移角结果比较
参数 μ σ ρ
$ {\theta _{{\delta} 2}} $ $ {\theta _{{\delta} 8}} $ $ {\theta _{{\delta} 10}} $ $ {\sigma _{{\delta} 10}} $
$ {\theta _{{\delta} 2}} $ 0.022 0.004 0 1.000
$ {\theta _{{\delta} 8}} $ 0.001 0.0003 ?0.130 1.000 00
$ {\theta _{{\delta} 10}} $ ?0.079 0.012 0 0.310 ?0.420 00 1.00
$ {\sigma _{{\delta} 10}} $ 0.211 0.014 0 ?0.007 0.00005 ?0.02 1.0
表 4  最大层间位移角概率模型参数的后验分布信息
图 4  不同方法获取的顶层位移结果比较
参数 μ σ ρ
$ {\theta _{{d1}}} $ $ {\theta _{{d2}}} $ $ {\theta _{{d5}}} $ $ {\theta _{{d6}}} $ $ {\theta _{{d10}}} $ $ {\sigma _{{d}}} $
$ {\theta _{{d1}}} $ 0.808 0.081 1.00
$ {\theta _{{d2}}} $ 0.025 0.004 ?0.64 1.000
$ {\theta _{{d5}}} $ 0.026 0.006 ?0.50 ?0.120 1.00
$ {\theta _{{d6}}} $ ?0.461 0.118 ?0.61 0.200 0.42 1.00
$ {\theta _{{d10}}} $ 0.232 0.065 ?0.32 0.690 ?0.19 0.24 1.000
$ {\sigma _{{d}}} $ 0.179 0.012 ?0.03 0.008 0.03 0.01 ?0.007 1.0
表 5  顶层位移概率模型参数的后验分布信息
图 5  所提概率模型所建20层钢框架的4类地震需求概率密度曲线
图 6  不同方法计算的20层钢框架结构易损性曲线对比
1 潘钦锋, 颜桂云, 吴应雄, 等 近断层脉冲型地震动作用下高层建筑组合隔震的减震性能研究[J]. 振动工程学报, 2019, 32 (5): 845- 855
PAN Qin-feng, YAN Gui-yun, WU Ying-xiong, et al Seismic absorption performance of composite isolation for high-rise buildings subjected to near-fault pulse ground motions[J]. Journal of Vibration Engineering, 2019, 32 (5): 845- 855
2 董文悝, 高广运, 宋健, 等 近断层滑冲效应脉冲地震动对场地液化的影响[J]. 浙江大学学报: 工学版, 2018, 52 (9): 1651- 1657
DONG Wen-kui, GAO Guang-yun, SONG Jian, et al Effect of near-fault pulse-like ground motion with fling-step on site liquefaction[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (9): 1651- 1657
3 贾俊峰, 杜修力, 韩强 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报, 2015, 36 (1): 1- 12
JIA Jun-feng, DU Xiu-li, HAN Qiang A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J]. Journal of Building Structures, 2015, 36 (1): 1- 12
4 苏鹏, 陈彦江, 闫维明 近断层方向性效应地震作用下曲线梁桥试验[J]. 哈尔滨工业大学学报, 2019, 51 (6): 148- 155
SU Peng, CHEN Yan-jiang, YAN Wei-ming Experimental study on curved girder bridge under near-fault ground motion with directivity effect[J]. Journal of Harbin Institute of Technology, 2019, 51 (6): 148- 155
5 江义, 杨迪雄, 李刚 近断层地震动向前方向性效应和滑冲效应对高层钢结构地震反应的影响[J]. 建筑结构学报, 2010, 31 (9): 103- 110
JIANG Yi, YANG Di-xiong, LI Gang Effects of forward directivity and fling step of near-fault ground motions on seismic responses of high-rise steel structures[J]. Journal of Building Structures, 2010, 31 (9): 103- 110
6 于晓辉, 吕大刚, 王光远 关于概率地震需求模型的讨论[J]. 工程力学, 2013, 30 (8): 172- 179
YU Xiao-hui, LÜ Da-gang, WANG Guang-yuan Discussions on probabilistic seismic demand models[J]. Engineering Machanics, 2013, 30 (8): 172- 179
7 黄博, 廖凯龙, 赵宇, 等 考虑河谷地形影响的多层框架结构地震易损性[J]. 浙江大学学报: 工学版, 2019, 53 (4): 692- 701
HUANG Bo, LIAO Kai-long, ZHAO Yu, et al Seismic fragility analysis of multi-storey frame structure considering effect of valley terrain[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 692- 701
8 吕大刚, 宋鹏彦, 于晓辉, 等. 土木工程结构抗震可靠度理论的研究与发展 [C]// 第二届结构工程新进展国际论坛论文集. 大连: 中国建筑工业出版社, 2008: 775-787.
LV Da-gang, SONG Peng-yan, YU Xiao-hui, et al. Research and developments of seismic reliability theory of civil engineering structures [C]// Proceedings of the second International Forum on Advances in Structural Engineering. Dalian: China Architecture and Building Press, 2008: 775-787.
9 徐铭阳, 贾明明, 吕大刚 基于CPU并行计算的概率地震需求分析与地震易损性分析[J]. 土木工程学报, 2020, 53 (Suppl.2): 190- 197
XU Ming-yang, JIA Ming-ming, LV Da-gang Probabilistic seismic demand analysis and seismic fragility analysis based on CPU parallel computing[J]. China Civil Engineering Journal, 2020, 53 (Suppl.2): 190- 197
10 王伟, 胡书领, 邹超 基于增量动力分析的梁贯通式支撑钢框架地震易损性研究[J]. 建筑结构学报, 2021, 42 (4): 42- 49
WANG Wei, HU Shu-ling, ZOU Chao Seismic fragility analysis of beam-through steel braced frames based on IDA method[J]. Journal of Building Structures, 2021, 42 (4): 42- 49
11 乔云龙, 王自法 黏滞阻尼器对高层钢结构地震易损性的影响[J]. 地震工程与工程振动, 2020, 40 (1): 205- 212
QIAO Yun-long, WANG Zi-fa Effect of viscous damper on seismic vulnerability of high-rise steel structures[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40 (1): 205- 212
12 李钢, 张天昊, 董志骞 长耗能梁-偏心支撑机制对中心支撑钢框架结构抗震性能的影响[J]. 建筑科学与工程学报, 2020, 37 (3): 10- 17
LI Gang, ZHANG Tian-hao, DONG Zhi-qian Effect of long-link EBF mechanism on seismic performance of steel CBF[J]. Journal of Architecture and Civil Engineering, 2020, 37 (3): 10- 17
13 郑文豪 薄弱层对钢框架结构抗震性能影响分析[J]. 特种结构, 2020, 37 (2): 90- 95
ZHENG Wen-hao Effect of weak stories on seismic behavior of steel frame structures[J]. Special Structures, 2020, 37 (2): 90- 95
14 徐善华, 张宗星, 李柔, 等 锈蚀钢框架地震易损性评定方法[J]. 工程力学, 2018, 35 (12): 107- 115
XU Shan-hua, ZHANG Zong-xing, LI Rou, et al A method for the seismic vulnerability assessment of corroded steel structures[J]. Engineering Mechanics, 2018, 35 (12): 107- 115
15 OHTORI Y, CHRISTENSON R E, SPENCER B F, et al Benchmark control problems for seismically excited nonlinear buildings[J]. Journal of Engineering Mechanics, 2004, 130 (4): 366- 385
doi: 10.1061/(ASCE)0733-9399(2004)130:4(366)
16 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2010.
17 GARDONI P, DER KIUREGHIAN A, MOSALAM K M Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations[J]. Journal of Engineering Mechanics, 2002, 128 (10): 1024- 1038
doi: 10.1061/(ASCE)0733-9399(2002)128:10(1024)
18 GARDONI P, MOSALAM K M, KIUREGHIAN A D Probabilistic seismic demand models and fragility estimates for RC bridges[J]. Journal of Earthquake Engineering, 2003, 7 (Suppl.1): 79- 106
19 BAKHTIARY E, GARDONI P Probabilistic seismic demand model and fragility estimates for rocking symmetric blocks[J]. Engineering Structures, 2016, 114: 25- 34
doi: 10.1016/j.engstruct.2016.01.050
20 ZHAO G, GARDONI P, XU L, et al Probabilistic seismic demand models for circular tunnels subjected to transversal seismic load[J]. Tunnelling and Underground Space Technology, 2022, 125: 104527
doi: 10.1016/j.tust.2022.104527
21 BAKER J W Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 97 (5): 1486- 1501
doi: 10.1785/0120060255
22 CHANG Z, DE LUCA F, GODA K Automated classification of near-fault acceleration pulses using wavelet packets[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34 (7): 569- 585
doi: 10.1111/mice.12437
23 FENG J, ZHAO B, ZHAO T Quantitative identification of near-fault pulse-like ground motions based on variational mode decomposition technique[J]. Soil Dynamics and Earthquake Engineering, 2021, 151: 107009
doi: 10.1016/j.soildyn.2021.107009
24 ZHAO G, ZHU J, ZHU X, et al. Effects of the predominant pulse on the inelastic displacement ratios of pulse-like ground motions based on wavelet analysis[J]. Advances in Civil Engineering, 2021, 2021: 9154890
25 BRAY J D, RODRIGUEZ-MAREK A Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dynamics and Earthquake Engineering, 2004, 24 (11): 815- 828
doi: 10.1016/j.soildyn.2004.05.001
26 李玉占, 李永梅. 基于增量动力分析的高层钢框架地震易损性分析 [C]// 第十四届全国现代结构工程学术研讨会论文集. 天津: [s.n.], 2014: 781-787.
LI Yu-zhan, LI Yong-mei. Seismic fragility analysis of high-rise steel frame based on incremental dynamic analysis [C]// Proceedings of the 14th National Symposium on Modern Structural Engineering. Tianjin: [s.n.], 2014: 781-787.
[1] 赵人达, 贾毅, 占玉林, 王永宝, 廖平, 李福海, 庞立果. 强震区多跨长联连续梁桥减隔震设计[J]. 浙江大学学报(工学版), 2018, 52(5): 886-895.
[2] 胡根生,鲍文霞,梁栋,张为. 基于SVR和贝叶斯方法的全色与多光谱图像融合[J]. J4, 2013, 47(7): 1258-1266.
[3] 顾宇杰, 史治国, 李钰, 等. 基于二次采样的贝叶斯波束成形[J]. J4, 2009, 43(5): 812-816.
[4] 杨杰 胡德秀 吴中如. 基于最大熵原理的贝叶斯不确定性反分析方法[J]. J4, 2006, 40(5): 810-815.