Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1071-1079    DOI: 10.3785/j.issn.1008-973X.2023.06.002
土木工程、水利工程     
回应气候的高铁站房界面开敞策略与模拟验证
王楠1(),王劲柳2,刘丛红1,*()
1. 天津大学 建筑学院,天津 300072
2. 浙江大学建筑设计研究院有限公司,浙江 杭州 310028
Interface opening strategy of high-speed railway station buildings in response to climate and verification by simulation
Nan WANG1(),Jin-liu WANG2,Cong-hong LIU1,*()
1. School of Architecture, Tianjin University, Tianjin 300072, China
2. The Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
 全文: PDF(1898 KB)   HTML
摘要:

针对当前高铁站房能耗高、形式趋同的问题,提出回应不同气候的通过式空间界面适度开敞的设计策略. 运用基于建筑信息建模(BIM)的性能模拟工具,构建高铁站房典型模型;通过风环境和热环境模拟分析,确定不同气候区界面开敞的时间段. 实验结果表明,除夏热冬暖地区(以广州为例)以外,在其他气候区的夏季典型计算日里,通过式空间界面开敞可行,满足室内热舒适性要求. 在全年特定时间段,界面开敞有利于站房节能减排,尤其在夏热冬冷地区(以上海为例)和寒冷地区(以北京为例)的节能率分别达到44.8%和32.2%,减碳率分别为36.1%和21.3%. 界面开敞策略在高铁站房绿色设计方案中具有重要应用潜力,能够为高铁站房空间形式的地域性表达开拓思路.

关键词: 高铁站房回应气候界面开敞绿色策略性能模拟    
Abstract:

A design strategy through appropriately opening the passing space interface in response to climate was proposed as a solution to high energy consumption and formal convergence within the high-speed railway station buildings. Performance simulation tools based on building information modeling (BIM) were used to build a typical model, and the opening time period for different climate zones were determined according to wind and thermal environment simulation analysis. Results show that it is feasible to open up the passing space interface, meeting the requirement of indoor thermal comfort, in the case of a typical summer calculation day in climate zones except in hot summer and warm winter zone (Guangzhou as an example). Meanwhile, during the particular time periods of a year, interface opening is beneficial to energy savings and emission reduction in station buildings, especially in hot summer and cold winter zone (Shanghai as an example) and cold zone (Beijing as an example). The energy-savings reached up to 44.8% and 32.2%, respectively, as well as carbon reduction rates of 36.1% and 21.3%. Hence, the proposed strategy has significant application potential in the green design schemes of high-speed railway station buildings and can explore ideas for regional expression of spatial forms.

Key words: high-speed railway station building    climate response    interface opening    green strategy    performance simulation
收稿日期: 2022-05-13 出版日期: 2023-06-30
CLC:  TU 248.1  
基金资助: “十三五”国家重点研发计划资助项目(2016YFC0700200);天津市自然科学基金资助项目(21JCQNJC00450)
通讯作者: 刘丛红     E-mail: nancywang@tju.edu.cn;conghong_liu@163.com
作者简介: 王楠(1990—),女,博士,从事绿色建筑设计方法研究. orcid.org/0000-0002-2623-4871. E-mail: nancywang@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王楠
王劲柳
刘丛红

引用本文:

王楠,王劲柳,刘丛红. 回应气候的高铁站房界面开敞策略与模拟验证[J]. 浙江大学学报(工学版), 2023, 57(6): 1071-1079.

Nan WANG,Jin-liu WANG,Cong-hong LIU. Interface opening strategy of high-speed railway station buildings in response to climate and verification by simulation. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1071-1079.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.002        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1071

图 1  界面由封闭到开敞
图 2  开敞和封闭空间布置示意
图 3  基于建筑信息建模(BIM)的界面开敞策略验证流程
图 4  高铁站房典型模型
代表城市 rww rsr K / (W·m?2·K?1) s tvis
东向 西向 南向 北向 外墙 屋面 楼板 外窗
哈尔滨 0.18 0.18 0.31 0.24 0.12 0.38 0.28 0.38 2.00 0.48 0.45
北京 0.50 0.50 0.50 0.50 0.12 0.45 0.40 0.50 2.20 0.43 0.45
上海 0.70 0.70 0.70 0.70 0.15 0.60 0.40 0.70 2.20 0.30 0.45
广州 0.70 0.70 0.70 0.70 0.15 0.80 0.50 1.50 2.50 0.24 0.45
昆明 0.70 0.70 0.70 0.70 0.15 0.80 0.50 1.50 2.50 0.30 0.45
表 1  界面设计参数和主要围护结构热工性能参数
建筑热工设计区划 θmin θmax θcomax
Ⅱ级、Ⅲ级 Ⅱ级 Ⅲ级 Ⅱ级、Ⅲ级
严寒、寒冷地区 12 0.73 θrm+15.28(4≤θrm32) 30 θmax +3.67v
θmax +3.67v?4(RH?70%)
夏热冬冷、夏热冬暖、温和地区 12 0.73 θrm+12.72(7≤θrm35) 30
表 2  不同气候区非空调房间热湿环境评价
代表城市 row /%
北墙 南墙 东墙、西墙
哈尔滨 15 31 1.0
北京 15 50 1.0
上海、广州、昆明 25 70 1.0
表 3  建筑墙体开洞比取值
图 5  调整后的高架层平面及测点
图 6  不同城市的PHOENICS 实验模型
图 7  夏季典型计算日通过式大厅的测点温度(哈尔滨)
图 8  夏季典型计算日11:00通过式大厅的温度和风速分布云图(哈尔滨)
图 9  夏季典型计算日通过式大厅的测点温度(广州)
图 10  夏季典型计算日15:00通过式大厅的温度和风速分布云图(广州)
图 11  通过式空间逐时温度分布和可开敞时间段(哈尔滨)
气候区(代表城市) 可开敞时段
严寒地区(哈尔滨) 5 月 15 日—8 月 31日
寒冷地区(北京) 4 月 15 日—9 月 30日
夏热冬冷地区(上海) 4 月 5 日—11 月 15日
夏热冬暖地区(广州) 10 月 1 日—次年 5月 31 日
温和地区(昆明) 3 月 1 日—10 月 31日
表 4  站房界面可开敞时间段
图 12  典型模型与研究方案的能耗对比
图 13  典型模型与研究方案的全寿命期碳排放对比
1 李传成. 大空间建筑通风节能策略[M]. 北京: 中国建筑工业出版社, 2011.
2 傅筱, 陆蕾, 施琳 基本的绿色建筑设计——回应气候的形式空间设计策略[J]. 建筑学报, 2019, (1): 100- 104
FU Xiao, LU Lei, SHI Lin The basic green building design: climate-responsive design strategies for form and space[J]. Architectural Journal, 2019, (1): 100- 104
doi: 10.3969/j.issn.0529-1399.2019.01.016
3 徐一品, 傅筱, 赵惠惠, 等 回应气候的立面演绎——以沿海经济发达地区居住建筑围护结构研究为例[J]. 建筑学报, 2019, (11): 9- 17
XU Yi-pin, FU Xiao, ZHAO Hui-hui, et al Deduction of the facade in response to the climate: a case study on the residential building enclosure in the coastal developed areas[J]. Architectural Journal, 2019, (11): 9- 17
doi: 10.3969/j.issn.0529-1399.2019.11.003
4 李琴波, 王立雄, 党睿, 等 基于热舒适度的火车站候车厅节能设计与改造方法[J]. 建筑节能, 2014, 42 (3): 97- 102
LI Qin-bo, WANG Li-xiong, DANG Rui, et al Comfort-based energy efficiency reconstruction of waiting-room of railway station[J]. Building Energy Efficiency, 2014, 42 (3): 97- 102
5 黄艳雁, 王晶晶, 张辉 大空间建筑外遮阳设计及遮阳效果实测分析——以太原南铁路客运站为例[J]. 湖北工业大学学报, 2014, 29 (2): 33- 36
HUANG Yan-yan, WANG Jing-jing, ZHANG Hui Design and analysis of measured shading effects of large space building exterior shading: a case study of Taiyuan South Railway Station[J]. Journal of Hubei University of Technology, 2014, 29 (2): 33- 36
doi: 10.3969/j.issn.1003-4684.2014.02.008
6 毛红卫, 刘东, 赵奕 不同气候区铁路客站自然通风使用策略研究[J]. 暖通空调, 2012, 42 (10): 35- 40
MAO Hong-wei, LIU Dong, ZHAO Yi Natural ventilation application strategies of railway stations in different climatic regions[J]. Heating Ventilating and Air Conditioning, 2012, 42 (10): 35- 40
doi: 10.3969/j.issn.1002-8501.2012.10.007
7 YANG X E Building energy efficiency design for waiting halls of railway stations in the hot summer and cold-winter region[J]. Journal of Engineering Science and Technology Review, 2017, 10 (2): 1- 7
doi: 10.25103/jestr.102.01
8 盛晖, 李传成, 严芬. 绿色铁路客站规划设计方法探讨——以武广高铁武汉站为例 [C]// 第八届国际绿色建筑与建筑节能大会论文集. 北京: [s.n.], 2012: 53-63.
SHENG Hui, LI Chuan-cheng, YAN Fen. Planning and design method for green railway station: with Wuhan-Guangzhou high-speed railway station of Wuhan as an example [C]// Paper Collection for the Eighth International Conference on Green and Energy-Efficient Building. Beijing: [s.n.], 2012: 53-63.
9 王楠, 刘丛红, 杨鸿玮 欧洲火车站调研及其对我国高铁站房设计的启示[J]. 新建筑, 2021, (4): 81- 86
WANG Nan, LIU Cong-hong, YANG Hong-wei Survey of European railway stations and its inspiration to the design of Chinese high-speed railway station buildings[J]. New Architecture, 2021, (4): 81- 86
doi: 10.12069/j.na.202104081
10 吕爱民. 应变建筑——大陆性气候的生态策略[M]. 上海: 同济大学出版社, 2003.
11 卫莎莎. 热带海岛半敞开式建筑空间自然通风及热舒适研究[D]. 天津: 天津大学, 2013.
WEI Sha-sha. Research on natural ventilation and thermal comfort in semi-open building space in tropical island [D]. Tianjin: Tianjin University, 2013.
12 ZHU Y X, LUO M H, OUYANG Q, et al Dynamic characteristics and comfort assessment of airflows in indoor environments: a review[J]. Building and Environment, 2015, 91: 5- 14
doi: 10.1016/j.buildenv.2015.03.032
13 中国建设科技集团. 绿色建筑设计导则——建筑专业[M]. 北京: 中国建筑工业出版社, 2021.
14 LIU L, WU D, LI X J, et al Effect of geometric factors on the energy performance of high-rise office towers in Tianjin, China[J]. Building Simulation, 2017, 10: 625- 641
15 王楠, 刘丛红 BIM技术解读及其对建筑设计的影响[J]. 建筑师, 2019, (5): 110- 116
WANG Nan, LIU Cong-hong Analysis of BIM technology and its influence on architectural design[J]. The Architect, 2019, (5): 110- 116
16 高源. 整合碳排放评价的中国绿色建筑评价体系研究[D]. 天津: 天津大学, 2014.
GAO Yuan. Studies on the China’s green building assessment system integrated assessment of carbon emissions [D]. Tianjin: Tianjin University, 2014.
17 School of Built and Natural Environment. An inter-program analysis of computational fluid dynamics based on PHOENICS and DesignBuilder software [R]. Newcastle: Northumbria University, 2011.
18 DesignBuilder. ANSI/ASHRAE Standard 140-2017: building thermal envelope and fabric load tests [R]. [S.l.]: DesignBuilder SOFTWARE, 2021.
19 RAN J D, TANG M F Passive cooling of the green roofs combined with night-time ventilation and walls insulation in hot and humid regions[J]. Sustainable Cities and Society, 2018, 38: 466- 475
20 刘大龙, 刘加平, 侯立强, 等 气象要素对建筑能耗的效用差异性[J]. 太阳能学报, 2017, 38 (7): 1794- 1800
LIU Da-long, LIU Jia-ping, HOU Li-qiang, et al Differentiation analysis of meteorological parameters affecting building energy consumption[J]. Acta Energiae Solaris Sinica, 2017, 38 (7): 1794- 1800
21 国家铁路局. 绿色铁路客站评价标准: TB∕T 10429—2014[S]. 北京: 中国铁道出版社, 2014.
22 中华人民共和国住房和城乡建设部. 公共建筑节能设计标准: GB 50189—2015[S]. 北京: 中国建筑工业出版社, 2015.
23 中华人民共和国住房和城乡建设部. 民用建筑室内热湿环境评价标准: GB/T 50785—2012[S]. 北京: 中国建筑工业出版社, 2012.
24 张辰, 刘衍, 杨柳, 等 基于气候适应性分析的自然通风设计室外计算参数确定方法研究[J]. 建筑科学, 2020, 36 (8): 123- 130
ZHANG Chen, LIU Yan, YANG Liu, et al A method for determining outdoor calculation parameters of natural ventilation design based on climate suitability analysis[J]. Building Science, 2020, 36 (8): 123- 130
doi: 10.13614/j.cnki.11-1962/tu.2020.08.17
25 中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范: GB 50736—2012[S]. 北京: 中国建筑工业出版社, 2012.
26 夏柏树, 张宁, 白晓伟 大型火车站候车厅腔体植入设计的舒适度关联研究[J]. 建筑技艺, 2020, (7): 98- 101
XIA Bai-shu, ZHANG Ning, BAI Xiao-wei Correlation study on the comfort level of chamber implantation design in the waiting hall of large railway stations[J]. Architecture Technique, 2020, (7): 98- 101
27 ASHRAE. Thermal environmental conditions for human occupancy: ANSI/ASHRAE Standard 55-2017 [S]. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2017.
28 中华人民共和国住房和城乡建设部. 绿色建筑评价标准: GB/T 50378—2019[S]. 北京: 中国建筑工业出版社, 2019.
29 刘哲铭. 基于热环境与节能的严寒地区城市住区空间形态优化研究——以哈尔滨为例[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LIU Zhe-ming. Optimization of spatial configurations of urban residential areas based on thermal environment and energy saving in severe cold regions: case study of Harbin [D]. Harbin: Harbin Institute of Technology, 2020.
[1] 孔祥强,林琳,李瑛, 杨前明. R410A直膨式太阳能热泵热水器性能研究[J]. J4, 2013, 47(9): 1666-1671.
[2] 孔祥强, 张东, 李瑛, 杨前明. 制冷剂工质裸板太阳能集热器热性能模拟[J]. J4, 2011, 45(2): 217-221.