土木工程、水利工程 |
|
|
|
|
基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型 |
陈曦泽1( ),贾俊峰1,*( ),白玉磊1,郭彤2,杜修力1 |
1. 北京工业大学 城市建设学部,北京 100124 2. 东南大学 土木工程学院,江苏 南京 211189 |
|
Prediction model of axial bearing capacity of concrete-filled steel tube columns based on XGBoost-SHAP |
Xi-ze CHEN1( ),Jun-feng JIA1,*( ),Yu-lei BAI1,Tong GUO2,Xiu-li DU1 |
1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China 2. School of Civil Engineering, Southeast University, Nanjing 211189, China |
引用本文:
陈曦泽,贾俊峰,白玉磊,郭彤,杜修力. 基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型[J]. 浙江大学学报(工学版), 2023, 57(6): 1061-1070.
Xi-ze CHEN,Jun-feng JIA,Yu-lei BAI,Tong GUO,Xiu-li DU. Prediction model of axial bearing capacity of concrete-filled steel tube columns based on XGBoost-SHAP. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1061-1070.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.001
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1061
|
1 |
HOU C, ZHOU X G Strength prediction of circular CFST columns through advanced machine learning methods[J]. Journal of Building Engineering, 2022, 51: 104289
doi: 10.1016/j.jobe.2022.104289
|
2 |
韩林海, 牟廷敏, 王法承, 等 钢管混凝土混合结构设计原理及其在桥梁工程中的应用[J]. 土木工程学报, 2020, 53 (5): 1- 24 HAN Lin-hai, MU Ting-min, WANG Fa-cheng, et al Design theory of CFST (concrete-filled steel tubular) mixed structures and its applications in bridge engineering[J]. China Civil Engineering Journal, 2020, 53 (5): 1- 24
doi: 10.15951/j.tmgcxb.20200413.001
|
3 |
李学彬, 杨仁树, 高延法, 等 大断面软岩斜井高强度钢管混凝土支架支护技术[J]. 煤炭学报, 2013, 38 (10): 1742- 1748 LI Xue-bin, YANG Ren-shu, GAO Yan-fa, et al High-strength steel tubular confined concrete supports support technology for large section soft rock inclined shaft[J]. Journal of China Coal Society, 2013, 38 (10): 1742- 1748
doi: 10.13225/j.cnki.jccs.2013.10.018
|
4 |
YIN F, WANG R W, CAO W L, et al Seismic behavior of light weight CFST frame-fabricated single row reinforced shear wall structures[J]. Structures, 2021, 34: 4486- 4499
doi: 10.1016/j.istruc.2021.10.044
|
5 |
陈志华, 杜颜胜, 吴辽, 等 矩形钢管混凝土结构研究综述[J]. 建筑结构, 2015, 45 (16): 40- 46 CHEN Zhi-hua, DU Yan-sheng, WU Liao, et al Review of the research on rectangular concrete-filled steel tube structures[J]. Building Structure, 2015, 45 (16): 40- 46
doi: 10.19701/j.jzjg.2015.16.009
|
6 |
LIEW J Y R, XIONG M, XIONG D Design of concrete filled tubular beam-columns with high strength steel and concrete[J]. Structures, 2016, 8: 213- 226
doi: 10.1016/j.istruc.2016.05.005
|
7 |
骆涛涛, 李娜, 张涛, 等 圆钢管混凝土柱轴心受压承载力计算[J]. 武汉大学学报:工学版, 2014, 47 (6): 764- 768 LUO Tao-tao, LI Na, ZHAO Tao, et al Bearing capacity of circular concrete-filled steel tube columns under axial compression[J]. Engineering Journal of Wuhan University, 2014, 47 (6): 764- 768
|
8 |
VU Q V, TRUONG V H, THAI H T Machine learning-based prediction of CFST columns using gradient tree boosting algorithm[J]. Composite Structures, 2021, 259: 113505
doi: 10.1016/j.compstruct.2020.113505
|
9 |
BOUKHATEM B, KENAI S, TAGNIT-HAMOU A, et al Application of new information technology on concrete: an overview[J]. Journal of Civil Engineering and Management, 2011, 17 (2): 248- 258
doi: 10.3846/13923730.2011.574343
|
10 |
NGUYEN H Q, LY H B, TRAN V Q, et al Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression[J]. Materials, 2020, 13 (5): 1205
doi: 10.3390/ma13051205
|
11 |
TRAN V L, THAI D K, KIM S E A new empirical formula for prediction of the axial compression capacity of CCFT columns[J]. Steel and Composite Structures, 2019, 33 (2): 181- 194
|
12 |
LIU X R, WU Y Q, ZHOU Y S Axial compression prediction and GUI design for CCFST column using machine learning and Shapley additive explanation[J]. Buildings, 2022, 12 (5): 698
doi: 10.3390/buildings12050698
|
13 |
JAVED M F, FAROOQ F, MEMON S A, et al New prediction model for the ultimate axial capacity of concrete-filled steel tubes: an evolutionary approach[J]. Crystals, 2020, 10 (9): 741
doi: 10.3390/cryst10090741
|
14 |
NASER M Z, THAI S, THAI H T Evaluating structural response of concrete-filled steel tubular columns through machine learning[J]. Journal of Building Engineering, 2021, 34: 101888
doi: 10.1016/j.jobe.2020.101888
|
15 |
LYU F, FAN X Y, DING F X, et al Prediction of the axial compressive strength of circular concrete-filled steel tube columns using sine cosine algorithm-support vector regression[J]. Composite Structures, 2021, 273: 114282
doi: 10.1016/j.compstruct.2021.114282
|
16 |
TAHMASSEBI A, MOTAMEDI M, ALAVI A H, et al An explainable prediction framework for engineering problems: case studies in reinforced concrete members modeling[J]. Engineering Computations, 2022, 39 (2): 609- 626
doi: 10.1108/EC-02-2021-0096
|
17 |
ZHOU Z H. Ensemble methods: foundations and algorithms [M]. New York: CRC press, 2012.
|
18 |
徐凯, 杨锐 基于QPSO-DBN集成学习的城轨列车定位研究[J]. 电子测量与仪器学报, 2022, 36 (9): 21- 28 XU Kai, YANG Rui Research on the positioning of urban rail train based on QPSO-DBN ensemble learning[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36 (9): 21- 28
doi: 10.13382/j.jemi.B2104838
|
19 |
WEN L, HUGHES M Coastal wetland mapping using ensemble learning algorithms: a comparative study of bagging, boosting and stacking techniques[J]. Remote Sensing, 2020, 12 (10): 1683
doi: 10.3390/rs12101683
|
20 |
胡联粤, 岑健, 许文凯, 等 基于XGBoost算法的地下综合管廊安全状况评估方法[J]. 计算机应用, 2020, 40 (增1): 264- 268 HU Lian-yue, CEN Jian, XU Wen-kai, et al Safety situation evaluation method based on XGBoost algorithm for underground comprehensive pipe gallery[J]. Journal of Computer Applications, 2020, 40 (增1): 264- 268
|
21 |
LIM S, CHI S Xgboost application on bridge management systems for proactive damage estimation[J]. Advanced Engineering Informatics, 2019, 41: 100922
doi: 10.1016/j.aei.2019.100922
|
22 |
FENG D C, WANG W J, MANGALATHU S, et al Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls[J]. Journal of Structural Engineering, 2021, 147 (11): 04021173
doi: 10.1061/(ASCE)ST.1943-541X.0003115
|
23 |
DARMATASIA, ARYMURTHY A M. Predicting the status of water pumps using data mining approach [C]// 2016 International Workshop on Big Data and Information Security (IWBIS). Jakarta: IEEE, 2016: 57-64.
|
24 |
冯德成, 吴刚 混凝土结构基本性能的可解释机器学习建模方法[J]. 建筑结构学报, 2022, 43 (4): 228- 238 FENG De-cheng, WU Gang Interpretable machine learning-based modeling approach for fundamental properties of concrete structures[J]. Journal of Building Structures, 2022, 43 (4): 228- 238
|
25 |
JIANG K, HAN Q, BAI Y, et al Data-driven ultimate conditions prediction and stress-strain model for FRP-confined concrete[J]. Composite Structures, 2020, 242: 112094
doi: 10.1016/j.compstruct.2020.112094
|
26 |
DUAN J, ASTERIS P G, NGUYEN H, et al A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model[J]. Engineering with Computers, 2021, 37: 3329- 3346
doi: 10.1007/s00366-020-01003-0
|
27 |
CHANDRAMOULI P, JAYASEELAN R, PANDULU G, et al Estimating the axial compression capacity of concrete-filled double-skin tubular columns with metallic and non-metallic composite materials[J]. Materials, 2022, 15 (10): 3567
doi: 10.3390/ma15103567
|
28 |
NGO N T, PHAM T P T, LE H A, et al Axial strength prediction of steel tube confined concrete columns using a hybrid machine learning model[J]. Structures, 2022, 36: 765- 780
doi: 10.1016/j.istruc.2021.12.054
|
29 |
BARDHAN A, BISWAS R, KARDANI N, et al A novel integrated approach of augmented grey wolf optimizer and ANN for estimating axial load carrying-capacity of concrete-filled steel tube columns[J]. Construction and Building Materials, 2022, 337: 127454
doi: 10.1016/j.conbuildmat.2022.127454
|
30 |
DUNLOP P, SMITH S Estimating key characteristics of the concrete delivery and placement process using linear regression analysis[J]. Civil Engineering and Environmental Systems, 2003, 20 (4): 273- 290
doi: 10.1080/1028660031000091599
|
31 |
MAHALANOBIS P C. On the generalized distance in statistics [C]// Proceedings of the National Institute of Sciences. Caloutta: National Institute of Science of India, 1936, 2: 49-55.
|
32 |
QIAN W, GU C, ZHU C, et al. Short-term load forecasting based on multi-model fusion of CNN-LSTM-LGBM [C]// 2021 International Conference on Power System Technology. Haikou: IEEE, 2021: 934-939.
|
33 |
ZHU J, WANG Y Convolutional neural networks for predicting creep and shrinkage of concrete[J]. Construction and Building Materials, 2021, 306: 124868
doi: 10.1016/j.conbuildmat.2021.124868
|
34 |
LI W, YIN Y, QUAN X, et al Gene expression value prediction based on XGBoost algorithm[J]. Front Genet, 2019, 10: 1077
doi: 10.3389/fgene.2019.01077
|
35 |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S.l.]: ACM, 2016: 785-794.
|
36 |
陈明华, 刘群英, 张家枢, 等 基于XGBoost的电力系统暂态稳定预测方法[J]. 电网技术, 2020, 44 (3): 1026- 1034 CHEN Ming-hua, LIU Qun-ying, ZHANG Jia-shu, et al XGBoost-based algorithm for post-fault transient stability status prediction[J]. Power System Technology, 2020, 44 (3): 1026- 1034
doi: 10.13335/j.1000-3673.pst.2018.1649
|
37 |
HUANG C L, CHEN M C, WANG C J Credit scoring with a data mining approach based on support vector machines[J]. Expert Systems with Applications, 2007, 33 (4): 847- 856
doi: 10.1016/j.eswa.2006.07.007
|
38 |
BERGSTRA J, BENGIO Y Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13: 281- 305
|
39 |
邓丽, 武金达, 李科学, 等. 基于TPE的SpaRC算法超参数优化方法[J]. 计算机科学. 2021, 48(2): 70-75. DENG Li, WU Jin-da, LI Ke-xue, et al. SpaRC algorithm hyperparameter optimization methodology based on TPE [J]. Computer Science, 2021, 48(2): 70-75.
|
40 |
BERGSTRA J, BÀRDENET R, BENGIO Y, et al. Algorithms for hyperparameter optimization [C]// Proceedings of the 24th Internation Conference on Neural Information Processing Systems. [S.l.]: Curran Associates Inc., 2011: 2546-2554.
|
41 |
DONG H, HE D, WANG F SMOTE-XGBoost using tree Parzen estimator optimization for copper flotation method classification[J]. Powder Technology, 2020, 375: 174- 181
doi: 10.1016/j.powtec.2020.07.065
|
42 |
BERGSTRA J, YAMINS D, COX D D. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures [C]// Proceedings of the 30th International Conference on Machine Learning. Atlanta: [s.n.], 2013: 115-123.
|
43 |
中华人民共和国住房和城乡建设部. 钢管混凝土结构技术规范: GB 50936—2014 [S]. 北京: 中国建筑工业出版社, 2014.
|
44 |
British Standards Institution. Eurocode 4: design of composite steel and concrete structures: part 1-1: general rules and rules for buildings: BS EN 1994-1-1: 2004 [S]. London: British Standards Institution, 2004.
|
45 |
AIJ. Recommendations for design and construction of concrete-filled steel tubular structures [S]. [S.l.]: Architectural Institute of Japan, 2008.
|
46 |
ACI Committee 318. Building code requirements for structural concrete and commentary: ACI 318-08 [S]. Farmington Hills: ACI Committee Institute, 2008.
|
47 |
WANG Z B, TAO Z, HAN L H, et al Strength, stiffness and ductility of concrete-filled steel columns under axial compression[J]. Engineering Structures, 2017, 135: 209- 221
doi: 10.1016/j.engstruct.2016.12.049
|
48 |
GIAKOUMELIS G, LAM D Axial capacity of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research, 2004, 60 (7): 1049- 1068
doi: 10.1016/j.jcsr.2003.10.001
|
49 |
XU X, LIU C, ZHAO Y, et al Short-term traffic flow prediction based on whale optimization algorithm optimized BiLSTM_Attention[J]. Concurrency and Computation: Practice and Experience, 2022, 34 (10): e6782
|
50 |
周挺, 杨军, 詹祥澎, 等 一种数据驱动的暂态电压稳定评估方法及其可解释性研究[J]. 电网技术, 2021, 45 (11): 4416- 4425 ZHOU Ting, YANG Jun, ZHAN Xiang-peng, et al Data-driven method and interpretability analysis for transient voltage stability assessment[J]. Power System Technology, 2021, 45 (11): 4416- 4425
doi: 10.13335/j.1000-3673.pst.2020.2170
|
51 |
LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. [S.l.]: Curran Associates Inc., 2017: 4768-4777.
|
52 |
NASIRI H, HOMAFAR A, CHELGANI S C Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using an explainable artificial intelligence[J]. Results in Geophysical Sciences, 2021, 8: 100034
doi: 10.1016/j.ringps.2021.100034
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|