Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 1883-1891    DOI: 10.3785/j.issn.1008-973X.2020.10.003
信息工程     
相控阵雷达搜索和跟踪资源博弈分配策略
刘一鸣(),盛文*()
空军预警学院 防空预警装备系,湖北 武汉 430019
Game strategy of resource allocation for phased array radar search and tracking
Yi-ming LIU(),Wen SHENG*()
Department of Air Defense Early Warning Equipment, Air Force Early Warning Academy, Wuhan 430019, China
 全文: PDF(1441 KB)   HTML
摘要:

为了解决搜索和跟踪(SAT)资源分配(RA)实时性的问题,提出博弈论视角下的资源分配策略. 建立搜索与跟踪的系统模型,将SATRA建模为非合作博弈问题,将模型中搜索子空域和跟踪多目标间的资源分配问题看作合作博弈关系,利用Shapley值完成相应资源的分配,给出纳什均衡求解的双目标优化模型;为了快速找到符合决策者偏好的分配解,将双目标优化模型通过动态加权的理想点法转化为单目标优化问题,提出并行混合遗传粒子群优化(PHGAPSO)算法求解上述优化问题最优分配方案,仿真验证了博弈分配策略的有效性和先进性以及混合算法性能的优越性. 在相同的条件下,与帕累托双目标优化方法进行对比. 实验结果表明,博弈论的方法具有更高的灵活性,平均搜索信噪比提高了1.02%,平均跟踪目标误差降低了1.55%.

关键词: 相控阵雷达搜索与跟踪资源分配博弈策略Shapley值纳什均衡混合遗传粒子群优化    
Abstract:

A resource allocation strategy based on game theory was proposed in order to solve the real-time problem of search and tracking (SAT) resource allocation (RA). The system model of search and tracking was established, and SATRA was modeled as a non-cooperative game problem. The resource allocation problem between the search subspace and the tracking multi-object in the model was regarded as the cooperative game relationship. The Shapley value was used to complete the corresponding problem, and the double objective optimization model of Nash equilibrium was given. The above double objective optimization model was transformed into a single objective optimization problem by using the dynamic weighted ideal point method in order to quickly find the distribution solution that meets the preference of decision maker. A parallel hybrid genetic particle swarm optimization (PHGAPSO) algorithm was proposed to solve the optimal allocation scheme of the above optimization problem. The simulation results verified the effectiveness and advancement of the game allocation strategy and the superiority of the performance of the hybrid algorithm. The method was compared with the Pareto bi-objective optimization method under the same conditions. The experimental results show that the game theory method has higher flexibility. The average search signal-to-noise ratio is increased by 1.02%, and the tracking target error is reduced by 1.55%.

Key words: phased array radar    search and tracking    resource allocation    game strategy    Shapley value    Nash equilibrium    hybrid genetic particle swarm optimization
收稿日期: 2019-07-25 出版日期: 2020-10-28
CLC:  TN 958  
通讯作者: 盛文     E-mail: ls.liu_yiming@whu.edu.cn;sheng_wen@263.net
作者简介: 刘一鸣(1995—),男,硕士生,从事相控阵雷达资源管理技术研究. orcid.org/0000-0003-1041-0188. E-mail: ls.liu_yiming@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘一鸣
盛文

引用本文:

刘一鸣,盛文. 相控阵雷达搜索和跟踪资源博弈分配策略[J]. 浙江大学学报(工学版), 2020, 54(10): 1883-1891.

Yi-ming LIU,Wen SHENG. Game strategy of resource allocation for phased array radar search and tracking. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1883-1891.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.003        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/1883

图 1  PHGAPSO算法实现流程图
空域序号 Rm,k / (103 km) φm,k / (°)
1 2.5 10
2 2.5 12
3 2.7 10
4 2.8 8
5 3.0 10
6 2.9 6
表 1  1~10周期搜索空域1布置参数
空域序号 Rm,k / (103 km) φm,k / (°)
1 2.4 6
2 2.4 8
3 2.6 8
4 2.8 8
5 3.0 16
6 3.0 10
7 2.7 6
8 2.5 8
表 2  11~20周期搜索空域2布置参数
图 2  雷达责任区内的目标运动轨迹示意图
参数 数值 参数 数值
L 100 c1 2
Pc 0.4 c2 2
Pm 0.05 Pres 0~1.0
T 50 v 0.002~0.010
ω 0.7 PH(t) 0.5
表 3  PHGAPSO算法参数设计
图 3  GT和PBO方法的资源分配结果对比
图 4  GT和PBO方法的搜索效用对比
图 5  GT和PBO方法的跟踪效用对比
图 6  典型帧周期实际子空域资源分配图
图 7  典型帧周期实际多目标资源分配图
算法 Hmax tcom/s
PHGAPSO 0.007 368 3.505 643
GA 0.007 682 1.842 562
PSO 0.007 906 1.822 971
表 4  各算法寻优性能指标统计表
图 8  各寻优算法性能曲线的对比图
1 HOFFMANN F, CHARLISH A. A resource allocation model for the radar search function [C]// 2014 International Radar Conference. France: IEEE, 2014: 1-6.
2 卢建斌, 胡卫东, 郁文贤 相控阵雷达资源受限时最优搜索性能研究[J]. 系统工程与电子技术, 2004, 26 (10): 1388- 1390
LU Jian-bin, HU Wei-dong, YU Wen-xian Research on optimal search performance of phased array radar under resource constraints[J]. Systems Engineering and Electronic Technology, 2004, 26 (10): 1388- 1390
3 JANGA D S, CHOIA H L, ROHB J E Search optimization for minimum load under detection performance constraints in multi-function phased array radars[J]. Aerospace Science and Technology, 2015, 40: 86- 95
doi: 10.1016/j.ast.2014.10.005
4 ZHANG Z K, ZHU J H, LI H L. Optimal search algorithm for phased array radar without indication information [C]// 2014 6th International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou: IEEE, 2014: 322-325.
5 ZHANG H W, XIE J W, SHI J P, et al Joint beam and waveform selection for the MIMO radar target tracking[J]. Signal Processing, 2018, 156 (9): 31- 40
6 张贞凯, 汪飞, 周建江, 等 多目标跟踪中自适应时间资源调度[J]. 航空学报, 2011, 32 (3): 522- 530
ZHANG Zhen-kai, WANG Fei, ZHOU Jian-jiang Adaptive time resource scheduling in multi objective tracking[J]. Journal of Aeronautics, 2011, 32 (3): 522- 530
7 SHI C G, ZHOU J J, WANG F Adaptive resource management algorithm for target tracking in radar network based on low probability of intercept[J]. Multidimensional System and Signal Processing, 2017, 29 (4): 1203- 1226
8 YAN T, HAN C Z. Sensor management for multi-target detection and tracking based on PCRLB [C]// 20th International Conference on Information Fusion. Xi'an: IEEE, 2017: 1–6.
9 YAN J K, LIU H W, JIU B, et al Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63 (12): 3110- 3122
doi: 10.1109/TSP.2015.2417504
10 YUAN Y, YI W, KINBARAJAN T, et al Scaled accuracy based power allocation for multi-target tracking with colocated MIMO radars[J]. Signal Processing, 2019, 158: 227- 240
doi: 10.1016/j.sigpro.2019.01.014
11 王祥丽, 易伟, 孔令讲 基于多目标跟踪的相控阵雷达波束和驻留时间联合分配方法[J]. 雷达学报, 2017, 6 (6): 602- 610
WANG Xiang-li, YI Wei, KONG Ling-jiang Phased array radar beam and dwell time joint allocation method based on multi-target tracking[J]. Journal of Radar, 2017, 6 (6): 602- 610
12 XIE M C, YI W, KINBARAJAN T, et al Joint node selection and power allocation strategy for multi-target tracking in decentralized radar networks[J]. IEEE Transactions on Signal Processing, 2018, 66 (3): 729- 743
doi: 10.1109/TSP.2017.2777394
13 XIE M C, YI W, KONG L J, et al Receive-beam resource allocation for multiple target tracking with distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (5): 2421- 2436
doi: 10.1109/TAES.2018.2818579
14 ROMERO R A, GOODMAN N A Cognitive radar network: cooperative adaptive beamsteering for integrated search-and-track application[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49 (2): 915- 931
doi: 10.1109/TAES.2013.6494389
15 BYRNE M, WHITE K, WILLIAMS J. Scheduling multifunction radar for search and tracking [C]//18th International Conference on Information Fusion. Washington, DC: IEEE, 2015: 945–952.
16 SEVERSON T, PALEY D Distributed multi-target search and track assignment with consensus-based coordination[J]. IEEE Sensors Journal, 2015, 15 (2): 864- 875
doi: 10.1109/JSEN.2014.2355200
17 CHARLISH A, WOODBRIDGE K, GRIFFITHS H Phased array radar resource management using continuous double auction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51 (3): 2212- 2224
doi: 10.1109/TAES.2015.130558
18 YAN J K, PU W Q, LIU H W, et al Resource allocation for search and track application in phased array radar based on pareto bi-objective optimization[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (4): 3487- 3499
doi: 10.1109/TVT.2019.2894960
19 SHI C G, WANG F, MATHINI SELLATHURAI, et al Non-cooperative game theoretic power allocation strategy for distributed multiple-radar architecture in a spectrum sharing environment[J]. IEEE Access, 2018, 6: 17787- 17800
doi: 10.1109/ACCESS.2018.2817625
20 王妍, 马秀荣, 单云龙 Shapley值的LTE系统下行QoS感知资源调度[J]. 计算机工程与应用, 2020, (4): 76- 81
WANG Yan, MA Xiu-rong, SHAN Yun-long Downlink QoS aware resource scheduling for LTE systems with Shapley values[J]. Computer Engineering and Application, 2020, (4): 76- 81
21 YU X, ZHANG H B, YANG L, et al Cooperative game based resource allocation in hybrid D2D cellular network[J]. International Journal of Future Generation Communication and Networking, 2017, 10 (3): 71- 80
doi: 10.14257/ijfgcn.2017.10.3.08
22 TIMMER J, SCHEINHARDT W Cost sharing of cooperating queues in a Jackson network[J]. Queueing System, 2013, 75: 1- 17
doi: 10.1007/s11134-012-9336-4
23 JIANG W H, FENG W J, ZHAO X C, et al Resource allocation in energy constrained cooperative cognitive radio network[J]. IEICE Transactions on Communication, 2017, 100 (2): 354- 363
24 JIA Y N, YUE D W Energy-ef?cient uplink resource allocation based on game theory in cognitive small cell networks[J]. Wireless Personal Communication, 2017, 95 (3): 2437- 2459
doi: 10.1007/s11277-016-3927-z
25 MAHAFZA B R, ELSHERBENI A. Simulations for radar systems design (MATLAB) [M]. Massachusetts: Chapman, 2004: 117-128.
26 TICHAVSKY P, MURAVCHIK C H, NEHORAI A Posterior Cramér-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46 (5): 1386- 1396
doi: 10.1109/78.668800
27 张浩为, 谢军伟, 张昭建, 等 基于混合遗传-粒子群算法的相控阵雷达调度方法[J]. 系统工程与电子技术, 2017, 39 (9): 1985- 1991
ZHANG Hao-wei, XIE Jun-wei, ZHANG Zhao-jian, et al Phased array radar scheduling method based on hybrid genetic-particle swarm optimization[J]. Systems Engineering and Electronic Technology, 2017, 39 (9): 1985- 1991
28 JIANG H Q, ZHANG Y R, XU H Y Optimal allocation of cooperative jamming resource based on hybrid quantum-behaved particle swarm optimisation and genetic algorithm[J]. IET Radar, Sonar and Navigation, 2017, 11 (1): 185- 192
doi: 10.1049/iet-rsn.2016.0119
29 ZHU M X, LI J C, CHANG D G, et al Optimization of antenna array deployment for partial discharge localization in substations by hybrid particle swarm optimization and genetic algorithm method[J]. Energies, 2018, 1813 (11): 1- 18
30 杨水清, 杨加明, 孙超 改进的乘幂适应度函数在遗传算法中的应用[J]. 计算机工程与应用, 2014, 50 (17): 40- 43
YANG Shui-qing, YANG Jia-ming, SUN Chao Application of improved power fitness function in genetic algorithm[J]. Computer Engineering and Application, 2014, 50 (17): 40- 43
[1] 孙晨,吴哲奕,袁建涛. 电力物联网中节能的免许可D2D接入算法设计[J]. 浙江大学学报(工学版), 2020, 54(10): 1867-1873.
[2] 白如帆, 雷建坤, 张亮. 面向大数据试验场应用的资源优化分配[J]. 浙江大学学报(工学版), 2017, 51(6): 1225-1232.
[3] 张欣欣, 徐恪, 钟宜峰, 苏辉. 网络服务提供商合作行为的演化博弈分析[J]. 浙江大学学报(工学版), 2017, 51(6): 1214-1224.
[4] 庞海云 ,刘南. 基于不完全扑灭的应急物资分配博弈模型[J]. J4, 2012, 46(11): 2068-2072.
[5] 谢俊 白兴忠 魏建详 陈琳 甘德强. 西北电网调峰成本补偿研究[J]. J4, 2009, 43(3): 584-588.