Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (10): 1874-1882    DOI: 10.3785/j.issn.1008-973X.2020.10.002
信息工程     
基于脊路跟踪的变分非线性调频模态分解方法
赵雅琴1(),聂雨亭1,吴龙文1,*(),张宇鹏2,何胜阳1
1. 哈尔滨工业大学 电子与信息工程学院,黑龙江 哈尔滨 150001
2. 华为技术有限公司北京研究所,北京 100095
Multi-component signal separation using variational nonlinear chirp mode decomposition based on ridge tracking
Ya-qin ZHAO1(),Yu-ting NIE1,Long-wen WU1,*(),Yu-peng ZHANG2,Sheng-yang HE1
1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
2. Beijing Research Institute, Huawei Technology Limited Company, Beijing 100095, China
 全文: PDF(1519 KB)   HTML
摘要:

针对多个辐射源信号混合构成的多分量信号分离问题,提出基于脊路跟踪的变分非线性调频模态分解算法. 该方法使用改进的脊路重组算法对时频分布图中各分量瞬时频率进行提取,将提取出的各分量瞬时频率作为变分非线性调频模态分解的预设频率;利用重构后的多分量信号进行瞬时频率提取,更新预设频率后继续模态分解;重复上述过程,直到迭代前、后频率差值小于预设阈值,输出对应的模态分解结果. 实验结果表明,基于脊路跟踪的变分非线性调频模态分解算法比经典变分非线性调频模态分解算法具有更好的多分量信号分离效果.

关键词: 多分量信号脊路重组瞬时频率估计变分非线性调频模态分解    
Abstract:

A variational nonlinear chirp mode decomposition algorithm based on ridge tracking was proposed aiming at the problem of multi-component signal separation caused by mixed signals from multiple emitters. The improved ridge path regrouping algorithm was used to extract the instantaneous frequency of each component from the time-frequency distribution, and the extracted instantaneous frequency of each component was used as the preset frequency of the variational nonlinear chirp mode decomposition. A repeated instantaneous frequency extraction was performed signal to update the preset frequency for iteration based on the reconstructed multi-component. The above processes were repeated until the frequency difference between two iterations was less than the preset threshold, while the corresponding mode decomposition results were output. The experimental results show that the variational nonlinear chirp mode decomposition algorithm based on ridge tracking has better performance of multi-component signal separation than the classical variational nonlinear chirp mode decomposition.

Key words: multi-component signal    ridge path regrouping    instantaneous frequency estimation    variational nonlinear chirp mode decomposition
收稿日期: 2019-09-27 出版日期: 2020-10-28
CLC:  TN 971  
基金资助: 国家自然科学基金资助项目(61671185)
通讯作者: 吴龙文     E-mail: yaqinzhao@hit.edu.cn;wulongwen@hit.edu.cn
作者简介: 赵雅琴(1976—),女,教授,从事辐射源个体识别的研究. orcid.org/0000-0002-0167-0597. E-mail: yaqinzhao@hit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵雅琴
聂雨亭
吴龙文
张宇鹏
何胜阳

引用本文:

赵雅琴,聂雨亭,吴龙文,张宇鹏,何胜阳. 基于脊路跟踪的变分非线性调频模态分解方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1874-1882.

Ya-qin ZHAO,Yu-ting NIE,Long-wen WU,Yu-peng ZHANG,Sheng-yang HE. Multi-component signal separation using variational nonlinear chirp mode decomposition based on ridge tracking. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1874-1882.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.10.002        http://www.zjujournals.com/eng/CN/Y2020/V54/I10/1874

图 1  RT-VNCMD算法的基本流程
图 2  脊路重组算法估计瞬时频率性能对比
图 3  RT-VNCMD/VNCMD分解得到瞬时频率的相关误差
图 4  RT-VNCMD/VNCMD分解得到瞬时幅度的均方根误差
图 5  RT-VNCMD/VNCMD分解得到的时域图(SNR=15 dB)
图 6  RT-VNCMD/VNCMD分解得到瞬时频率的相关误差
图 7  RT-VNCMD/VNCMD分解得到瞬时幅度的均方根误差
图 8  RT-VNCMD/VNCMD分解得到的时域图(SNR=15 dB)
图 9  混合信号的时域波形
图 10  混合信号的时频信息
图 11  RT-VNCMD/VNCMD分解得到的时域图
分离方法 REf RMSE/dB
VNCMD 0.0124 0.6335
RT-VNCMD 0.0046 0.3500
表 1  VNCMD/RT-VNCMD的分解结果
1 GILLES J Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61 (16): 3999- 4010
doi: 10.1109/TSP.2013.2265222
2 BHATTACHARYYA A, PACHORI R B A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform[J]. IEEE Transactions on Biomedical Engineering, 2017, 64 (9): 2003- 2015
doi: 10.1109/TBME.2017.2650259
3 HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
4 DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544
doi: 10.1109/TSP.2013.2288675
5 CHEN S Q, DONG X J, PENG Z K, et al Nonlinear chirp mode decomposition: a variational method[J]. IEEE Transactions on Signal Processing, 2017, 65 (22): 6024- 6037
doi: 10.1109/TSP.2017.2731300
6 REDDY G R S, RAO R Analysis of multi-component non-stationary signals using Fourier-Bessel series and Wigner-Hough transform[J]. Journal of Electronic Science and Technology, 2017, 15 (1): 69- 76
7 施闻明, 朱海, 杨晓东. 基于自适应核函数的Wigner变换方法研究[C]//第13届中国系统仿真技术及其应用学术年会, 黄山: Scientific Research Publish, 2011: 126-129.
SHI Wen-ming, ZHU Hai, YANG Xiao-dong. Research on Wigner transform based on adaptive kernel function [C]// 13th System Simulation Technology and Application. Huangshan: Scientific Research Publish, 2011: 126-129.
8 KHAN N A, BOASHASH B Instantaneous frequency estimation of multicomponent nonstationary signals using multiview time-frequency distributions based on the adaptive fractional spectrogram[J]. IEEE Signal Processing Letters, 2013, 20 (2): 157- 160
doi: 10.1109/LSP.2012.2236088
9 STANKOVIC L, THAYAPARAN T, DAKOVIC M, et al Micro-Doppler removal in the radar imaging analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49 (2): 1234- 1250
doi: 10.1109/TAES.2013.6494410
10 CHEN S Q, DONG X J, XING G P, et al Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition[J]. IEEE Sensors Journal, 2017, 17 (18): 5994- 6005
doi: 10.1109/JSEN.2017.2737467
11 BARKAT B, ABED-MERAIM K Algorithms for blind components separation and extraction from the time-frequency distribution of their mixture[J]. Eurasip Journal on Applied Signal Processing, 2004, 2004 (13): 2025- 2033
12 PICINBONO B On instantaneous amplitude and phase of signals[J]. IEEE Transactions on Signal Processing, 1997, 45 (3): 552- 560
doi: 10.1109/78.558469
13 MEIGNEN S, PHAM D H, MCLAUGHLIN S On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[J]. IEEE Transactions on Signal Processing, 2017, 65 (8): 2093- 2103
doi: 10.1109/TSP.2017.2656838
14 PAB M C, LIN Y F Further exploration of Vold-Kalman-filtering order tracking with shaft-speed information I: theoretical part, numerical implementation and parameter investigations[J]. Mechanical Systems and Signal Processing, 2006, 20 (5): 1134- 1154
doi: 10.1016/j.ymssp.2005.01.005
15 HOU T Y, SHI Z Q Sparse time-frequency decomposition based on dictionary adaptation[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2016, 374 (2065): 1- 16
16 STEPHEN B, NEAL P, ERIC C, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [M]// Foundations and Trends in Machine Learning. Boston: Now Publishers, 2011, 3(1): 1-122.
No related articles found!