| 通信工程、自动化技术 | 
									
										
		  							 | 
          							
		  									  								 
		  									  							    
		  									  								 
		  									  							 | 
        						 
      						 
      					 | 
  					 
  					
    					 | 
   					 
   										
    					| 基于SVR和贝叶斯方法的全色与多光谱图像融合 | 
  					 
  					  										
						| 胡根生1,2,鲍文霞1,2,梁栋1,2,张为1 | 
					 
															
					1.安徽大学 计算智能与信号处理教育部重点实验室,安徽 合肥 230039; 
2.安徽大学 电子信息工程学院,安徽 合肥 230601 | 
					 
										
						 | 
					 
   										
    					Fusion of panchromatic image and multi-spectral image based on  
SVR and Bayesian method  | 
  					 
  					  					  					
						| HU Gen-sheng1,2, BAO Wen-xia1,2, LIANG Dong1,2, ZHANG Wei1 | 
					 
															
						1. MOE Key Laboratory of IC & SP, Anhui University, Hefei 230039, China;2. School of Electronics and  
Information Engineering, Anhui University, Hefei 230601, China | 
					   
									 
				
				
					
						
							
								
									
									
									
									
									 
          
          
            
             
												
												
												
												
												
												引用本文: 
																													
																																胡根生,鲍文霞,梁栋,张为. 基于SVR和贝叶斯方法的全色与多光谱图像融合[J]. J4, 2013, 47(7): 1258-1266.	
																															 
																																								     												                                                    																													
																																HU Gen-sheng, BAO Wen-xia, LIANG Dong, ZHANG Wei. Fusion of panchromatic image and multi-spectral image based on  
SVR and Bayesian method . J4, 2013, 47(7): 1258-1266.	
																															  
																												
														链接本文: 
															
																																	
																	http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.07.019
																	   或   
																																
																http://www.zjujournals.com/eng/CN/Y2013/V47/I7/1258
														    
														   
												 | 
												 
												 
												
												
												
             
                         
            
									            
									                
																														  
																|   [1] CHEN S, ZHANG R, SU H, et al. SAR and multispectral image fusion using generalized IHS transform based on à Trous wavelet and EMD decompositions [J]. IEEE Sensors Journal, 2010, 10(3): 737-745. 
[2] SALVADEO D H P, MASCARENHAS N D A, MOREIRA J, et al. Improving face recognition performance using RBPCA maxlike and information fusion [J]. Computing in Science and Engineering, 2011, 13(3): 14-21. 
[3] TU T M, CHENG W C, CHANG C P, et al. Best tradeoff for high-resolution image fusion to preserve spatial details and minimize color distortion [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 302-306. 
[4] RAHMAN M M, CSAPLOVICS E. Examination of image fusion using synthetic variable ratio (SVR) technique [J]. International Journal of Remote Sensing, 2007, 28(15): 3413-3424. 
[5] CHENG G, GUO L, ZHAO T. An improved multi-focus image fusion method based on wavelet transform [C]∥ Proceedings of ICEEE 2010. Henan: IEEE, 2010: 1-4. 
[6] IOANNIDOU S, KARATHANASSI V. Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on quickbird image fusion [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 166-170. 
[7] KONG W W, LEI Y J, LEI Y, et al. Image fusion technique based on non-subsampled contourlet transform and adaptive unit-fast-linking pulse-coupled neural network [J]. IET Image Processing, 2011, 5(2): 113-121. 
[8] YANG S, WANG M, LU Y, et al. Fusion of multiparametric SAR images based on SW-nonsubsampled contourlet and PCNN [J]. Signal Processing, 2009, 89(12): 2596-2608. 
[9] CHANG X, JIAO L, LIU F, et al. Multicontourlet-based adaptive fusion of infrared and visible remote sensing images [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 549-553. 
[10] LI X, HE Y, ZHAN X. Edge-enhancement EPMA image fusion based on directionlet transform [C]∥3rd International Symposium on Intelligent Information Technology Application. Nanchang: IEEE, 2009: 180-183. 
[11] HARDIE R C, EISMANN M T, WILSON G L. MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor [J]. IEEE Transactions on Image Processing, 2004, 13(9): 1174-1184. 
[12] FASBENDER D, RADOUX J, BOGAERT P. Bayesian data fusion for adaptable image pansharpening [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1847-1857. 
[13] ZHANG Y, DE BACKER S, SCHEUNDERS P. Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3834-3843. 
[14] 胡根生, 邓飞其. 具有多分段损失函数的多输出支持向量机回归[J]. 控制理论与应用, 2007, 24(5): 711-714. 
HU Gen-sheng, DENG Fei-qi. Multi-output support vector regression with piecewise loss function [J]. Control Theory and Applications, 2007,24(5): 711-714. 
[15] SCHOLKOPT B, SMOLA A J. Learning with Kernels[M]. Cambridge:  MIT, 2002. 
[16] 胡根生, 梁栋, 孔颉. 基于支持向量值轮廓波变换的遥感影像融合[J]. 电子学报, 2010, 38(6): 1287-1291. 
HU Gen-sheng, LIANG Dong, KONG Jie. Remote sensing image fusion based on support vector value contourlet transform [J]. Acta Electronic Sinica, 2010, 38(6): 1287-1291. 
[17] 胡根生, 梁栋, 黄林生. 基于支持向量值轮廓波变换的遥感图像去噪[J]. 系统工程与电子技术, 2011, 33(7): 1658-1663. 
HU Gen-sheng, LIANG Dong, HUANG Lin-sheng. Remote sensing image denoising based on support vector value contourlet transform [J]. Systems Engineering and Electronics, 2011, 33(7): 1658-1663. 
[18]ZHENG S, SHI W, LIU J, et al. Remote sensing image fusion using multiscale mapped LS-SVM [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1313-1322. 
[19] SHEN H, ZHANG L, HUANG B, et al.A MAP approach for joint motion estimation, segmentation, and super resolution [J]. IEEE Transactions on Image Processing, 2007, 16(2): 479-490. 
[20] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society, Series B, 1977, 39 (1): 1-22. 
[21] SUNDARESHAN M K, BHATTACHARJEE S. Superresolution of passive millimeter-wave images using a combined maximum-likelihood optimization and projection-onto-convex- sets approach [J]. Proceeding of SPIE, 2001, 4373: 105-116. 
[22] WANG Z, WANG W. Fast and adaptive method for SAR superresolution imaging based on point scattering model and optimal basis selection [J]. IEEE Transactions on Image Processing, 2009, 18(7):1477-1486. 
[23] ELBAKARY M, ALAM M. Superresolution construction of multispectral imagery based on local enhancement [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 276-279. 
[24] JI H, FERMULLER C. Robust wavelet-based super-resolution reconstruction: theory and algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(4): 6496-60. 
[25] YAP K H, HE Y, TIAN Y, et al. A nonlinear L1-norm approach for joint image registration and super-resolution [J]. IEEE Signal Processing Letters, 2009, 16(11): 981-984. 
[26] FREEMAN W T, JONES T R, PASZTOR E C. Example based superresolution [J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65. 
[27] CHAN T, ZHANG J, PU J, et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection [J]. Pattern Recognition Letters, 2009, 30(5): 494-502. 
[28] MIRAVET C, RODRIGUEZ F B. A two-step neural-network based algorithm for fast image super-resolution [J]. Image and Vision Computing, 2007, 25(9): 1449-1473. 
[29] TAKEDA H, MILANFAR P, PROTTER M, et al. Super-resolution without explicit subpixel motion estimation [J]. IEEE Transactions on Image Processing, 2009, 18(9): 1958-1975. 
[30] NI K S, NGUYEN T Q. Image superresolution using support vector regression [J]. IEEE Transactions on Image Processing, 2007, 16(6): 1596-1610. 
[31] LIN Z, HE J, TANG X, et al. Limits of learning-based superresolution algorithms\ [J\]. International Journal of Computer Vision, 2008, 80(3):406-420. 
[32] ELBAKARY M, ALAM M. Superresolution construction of multispectral imagery based on local enhancement [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 276-279. 
[33] FASBENDER D, TUIA D, BOGAERT P, et al. Support-based implementation of Bayesian data fusion for spatial enhancement: applications to ASTER thermal images [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 598-602.  | 
															   
																													 
									             
									           
             
			            			 
			 
             
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
             
           
      
									
									
		
									
									
									
									
									
									 | 
								 
							 
						 | 
					 
				 
			
		 |