Please wait a minute...
J4  2013, Vol. 47 Issue (7): 1258-1266    DOI: 10.3785/j.issn.1008-973X.2013.07.019
1.安徽大学 计算智能与信号处理教育部重点实验室,安徽 合肥 230039;
2.安徽大学 电子信息工程学院,安徽 合肥 230601
Fusion of panchromatic image and multi-spectral image based on
SVR and Bayesian method 
HU Gen-sheng1,2, BAO Wen-xia1,2, LIANG Dong1,2, ZHANG Wei1
1. MOE Key Laboratory of IC & SP, Anhui University, Hefei 230039, China;2. School of Electronics and
Information Engineering, Anhui University, Hefei 230601, China
 全文: PDF  HTML



The fusion  images with high spatial resolution and high spectral resolution can be obtained by fusing panchromatic images and multi-spectral images. Support vector value contourlet transform constructed by using support vector regression model was used to decompose source images at multi-scale, multi-direction and multi-resolution. The algorithm of fusing panchromatic image and multi-spectral image was derived at different levels by using Bayesian method. By utilizing the strong learning ability of support vector regression and the relationship of multi-spectral image with panchromatic image, the super-resolved multi-spectral image was reconstructed to resolve the problem of coincident resolution of images to be fused. Experimental results show that the fused image obtained by the method not only has  high spatial resolution, but also preserves the spectral characteristics of the multi-spectral images. The fusion performance of the method is better than traditional image fusion methods.

出版日期: 2013-07-01
:  TP 391  


通讯作者: 梁栋,男,教授.     E-mail:
作者简介: 胡根生(1971-),男,副教授,从事机器学习、图像处理、模式识别等的研究
E-mail Alert


胡根生,鲍文霞,梁栋,张为. 基于SVR和贝叶斯方法的全色与多光谱图像融合[J]. J4, 2013, 47(7): 1258-1266.

HU Gen-sheng, BAO Wen-xia, LIANG Dong, ZHANG Wei. Fusion of panchromatic image and multi-spectral image based on
SVR and Bayesian method . J4, 2013, 47(7): 1258-1266.


[1] CHEN S, ZHANG R, SU H, et al. SAR and multispectral image fusion using generalized IHS transform based on à Trous wavelet and EMD decompositions [J]. IEEE Sensors Journal, 2010, 10(3): 737-745.
[2] SALVADEO D H P, MASCARENHAS N D A, MOREIRA J, et al. Improving face recognition performance using RBPCA maxlike and information fusion [J]. Computing in Science and Engineering, 2011, 13(3): 14-21.
[3] TU T M, CHENG W C, CHANG C P, et al. Best tradeoff for high-resolution image fusion to preserve spatial details and minimize color distortion [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 302-306.
[4] RAHMAN M M, CSAPLOVICS E. Examination of image fusion using synthetic variable ratio (SVR) technique [J]. International Journal of Remote Sensing, 2007, 28(15): 3413-3424.
[5] CHENG G, GUO L, ZHAO T. An improved multi-focus image fusion method based on wavelet transform [C]∥ Proceedings of ICEEE 2010. Henan: IEEE, 2010: 1-4.
[6] IOANNIDOU S, KARATHANASSI V. Investigation of the dual-tree complex and shift-invariant discrete wavelet transforms on quickbird image fusion [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 166-170.
[7] KONG W W, LEI Y J, LEI Y, et al. Image fusion technique based on non-subsampled contourlet transform and adaptive unit-fast-linking pulse-coupled neural network [J]. IET Image Processing, 2011, 5(2): 113-121.
[8] YANG S, WANG M, LU Y, et al. Fusion of multiparametric SAR images based on SW-nonsubsampled contourlet and PCNN [J]. Signal Processing, 2009, 89(12): 2596-2608.
[9] CHANG X, JIAO L, LIU F, et al. Multicontourlet-based adaptive fusion of infrared and visible remote sensing images [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 549-553.
[10] LI X, HE Y, ZHAN X. Edge-enhancement EPMA image fusion based on directionlet transform [C]∥3rd International Symposium on Intelligent Information Technology Application. Nanchang: IEEE, 2009: 180-183.
[11] HARDIE R C, EISMANN M T, WILSON G L. MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor [J]. IEEE Transactions on Image Processing, 2004, 13(9): 1174-1184.
[12] FASBENDER D, RADOUX J, BOGAERT P. Bayesian data fusion for adaptable image pansharpening [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1847-1857.
[13] ZHANG Y, DE BACKER S, SCHEUNDERS P. Noise-resistant wavelet-based Bayesian fusion of multispectral and hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3834-3843.
[14] 胡根生, 邓飞其. 具有多分段损失函数的多输出支持向量机回归[J]. 控制理论与应用, 2007, 24(5): 711-714.
HU Gen-sheng, DENG Fei-qi. Multi-output support vector regression with piecewise loss function [J]. Control Theory and Applications, 2007,24(5): 711-714.
[15] SCHOLKOPT B, SMOLA A J. Learning with Kernels[M]. Cambridge:  MIT, 2002.
[16] 胡根生, 梁栋, 孔颉. 基于支持向量值轮廓波变换的遥感影像融合[J]. 电子学报, 2010, 38(6): 1287-1291.
HU Gen-sheng, LIANG Dong, KONG Jie. Remote sensing image fusion based on support vector value contourlet transform [J]. Acta Electronic Sinica, 2010, 38(6): 1287-1291.
[17] 胡根生, 梁栋, 黄林生. 基于支持向量值轮廓波变换的遥感图像去噪[J]. 系统工程与电子技术, 2011, 33(7): 1658-1663.
HU Gen-sheng, LIANG Dong, HUANG Lin-sheng. Remote sensing image denoising based on support vector value contourlet transform [J]. Systems Engineering and Electronics, 2011, 33(7): 1658-1663.
[18]ZHENG S, SHI W, LIU J, et al. Remote sensing image fusion using multiscale mapped LS-SVM [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1313-1322.
[19] SHEN H, ZHANG L, HUANG B, et al.A MAP approach for joint motion estimation, segmentation, and super resolution [J]. IEEE Transactions on Image Processing, 2007, 16(2): 479-490.
[20] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society, Series B, 1977, 39 (1): 1-22.
[21] SUNDARESHAN M K, BHATTACHARJEE S. Superresolution of passive millimeter-wave images using a combined maximum-likelihood optimization and projection-onto-convex- sets approach [J]. Proceeding of SPIE, 2001, 4373: 105-116.
[22] WANG Z, WANG W. Fast and adaptive method for SAR superresolution imaging based on point scattering model and optimal basis selection [J]. IEEE Transactions on Image Processing, 2009, 18(7):1477-1486.
[23] ELBAKARY M, ALAM M. Superresolution construction of multispectral imagery based on local enhancement [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 276-279.
[24] JI H, FERMULLER C. Robust wavelet-based super-resolution reconstruction: theory and algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(4): 6496-60.
[25] YAP K H, HE Y, TIAN Y, et al. A nonlinear L1-norm approach for joint image registration and super-resolution [J]. IEEE Signal Processing Letters, 2009, 16(11): 981-984.
[26] FREEMAN W T, JONES T R, PASZTOR E C. Example based superresolution [J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65.
[27] CHAN T, ZHANG J, PU J, et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection [J]. Pattern Recognition Letters, 2009, 30(5): 494-502.
[28] MIRAVET C, RODRIGUEZ F B. A two-step neural-network based algorithm for fast image super-resolution [J]. Image and Vision Computing, 2007, 25(9): 1449-1473.
[29] TAKEDA H, MILANFAR P, PROTTER M, et al. Super-resolution without explicit subpixel motion estimation [J]. IEEE Transactions on Image Processing, 2009, 18(9): 1958-1975.
[30] NI K S, NGUYEN T Q. Image superresolution using support vector regression [J]. IEEE Transactions on Image Processing, 2007, 16(6): 1596-1610.
[31] LIN Z, HE J, TANG X, et al. Limits of learning-based superresolution algorithms\
[J\]. International Journal of Computer Vision, 2008, 80(3):406-420.
[32] ELBAKARY M, ALAM M. Superresolution construction of multispectral imagery based on local enhancement [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 276-279.
[33] FASBENDER D, TUIA D, BOGAERT P, et al. Support-based implementation of Bayesian data fusion for spatial enhancement: applications to ASTER thermal images [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 598-602.

[1] 赵建军,王毅,杨利斌. 基于时间序列预测的威胁估计方法[J]. J4, 2014, 48(3): 398-403.
[2] 崔光茫, 赵巨峰, 冯华君, 徐之海, 李奇, 陈跃庭. 非均匀介质退化图像快速仿真模型的建立[J]. J4, 2014, 48(2): 303-311.
[3] 张天煜, 冯华君, 徐之海, 李奇, 陈跃庭. 基于强边缘宽度直方图的图像清晰度指标[J]. J4, 2014, 48(2): 312-320.
[4] 刘中, 陈伟海, 吴星明, 邹宇华, 王建华. 基于双目视觉的显著性区域检测[J]. J4, 2014, 48(2): 354-359.
[5] 王相兵,童水光,钟崴,张健. 基于可拓重用的液压挖掘机结构性能方案设计[J]. J4, 2013, 47(11): 1992-2002.
[6] 王进, 陆国栋, 张云龙. 基于数量化一类分析的IGA算法及应用[J]. J4, 2013, 47(10): 1697-1704.
[7] 刘羽, 王国瑾. 以已知曲线为渐进线的可展曲面束的设计[J]. J4, 2013, 47(7): 1246-1252.
[8] 吴金亮, 黄海斌, 刘利刚. 保持纹理细节的无缝图像合成[J]. J4, 2013, 47(6): 951-956.
[9] 陈潇红,王维东. 基于时空联合滤波的高清视频降噪算法[J]. J4, 2013, 47(5): 853-859.
[10] 朱凡,李悦,蒋 凯,叶树明,郑筱祥. 基于偏最小二乘的大鼠初级运动皮层解码[J]. J4, 2013, 47(5): 901-905.
[11] 吴宁, 陈秋晓, 周玲, 万丽. 遥感影像矢量化图形的多层次优化方法[J]. J4, 2013, 47(4): 581-587.
[12] 计瑜,沈继忠,施锦河. 一种基于盲源分离的眼电伪迹自动去除方法[J]. J4, 2013, 47(3): 415-421.
[13] 王翔,丁勇. 基于Gabor滤波器的全参考图像质量评价方法[J]. J4, 2013, 47(3): 422-430.
[14] 童水光, 王相兵, 钟崴, 张健. 基于BP-HGA的起重机刚性支腿动态优化设计[J]. J4, 2013, 47(1): 122-130.
[15] 刘芳, 孙芸, 杨庚, 林海. 基于粒子群优化算法的社交网络可视化[J]. J4, 2013, 47(1): 37-43.