Please wait a minute...
J4  2013, Vol. 47 Issue (1): 122-130    DOI: 10.3785/j.issn.1008-973X.2013.01.018
机械与能源工程     
基于BP-HGA的起重机刚性支腿动态优化设计
童水光, 王相兵, 钟崴, 张健
浙江大学 热工与动力系统研究所,浙江 杭州 310027
Dynamic optimization design for rigid landing leg of crane
based on BP-HGA
TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian
Institute of Thermal Science and Power System,Zhejiang University,Hangzhou 310027,China
 全文: PDF  HTML
摘要:

针对门式起重机刚性支腿结构动态特性的复杂性和非线性,利用参数化有限元模型和BP神经网络,建立刚性支腿设计变量和最大动应力、弯曲动刚度及顶部最大动位移之间的映射关系.对于建立的神经网络模型,采用混合遗传算法(HGA)构造基于模糊动态罚函数的适应度函数引导遗传算法的搜索方向,寻求刚性支腿隔板、侧板的布置及尺寸最优化,并满足低应力、高固有频率及轻量化的要求.开发了某型号门式起重机刚性支腿多目标动态优化设计系统.应用结果表明,采用该优化方法能够有效地实现起重机刚性支腿的动态结构优化,显著提高了设计质量和效率.

Abstract:

 Focused on the complexity and highly nonlinearity of the structural dynamics characteristic in the rigid landing leg of gantry crane, the parametric finite element model and the back propagation (BP) neural network were used to establish the mapping relationship between the design variables of rigid landing leg and the maximum dynamic stress, the bending dynamic stiffness, the maximum dynamic displacement on the top of rigid landing leg.  The hybrid genetic algorithm (HGA) was adopted based on the established neural network model in order to find the layout optimization of the clapboards, the lateral plates and their sizes in rigid landing leg. The fitness function was constructed based on fuzzy dynamic penalty function to guide the searching direction. Then the requirements of low-stress, high natural frequency and lightweight were meeted. Multi-objective dynamic optimization design systems were developed for the rigid landing leg of a certain crane. Application results indicate that the dynamic structural optimization of rigid landing leg can be effectively conducted, and the design quality and efficiency are evidently improved.

出版日期: 2013-01-01
:  TP 391  
基金资助:

 上海市“创新行动计划”产学研联盟专项资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

童水光, 王相兵, 钟崴, 张健. 基于BP-HGA的起重机刚性支腿动态优化设计[J]. J4, 2013, 47(1): 122-130.

TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian. Dynamic optimization design for rigid landing leg of crane
based on BP-HGA. J4, 2013, 47(1): 122-130.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.01.018        http://www.zjujournals.com/eng/CN/Y2013/V47/I1/122

[1] 荣见华,郑健龙,徐飞鸿.结构动力修改及优化设计[M].北京:人民交通出版社, 2002: 13-25.
[2] 廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2003: 110-130.
[3] 陈官顺,刘艳斌,叶星. 龙门起重机结构动态优化设计[J]. 现代制造工程,2010(8): 149-152.
CHEN Guan-shun, LIU Yan-bin, YE Xing. Structural dynamic optimization design for gantry crane [J]. Modern Manufacturing Engineering, 2010(8): 149-152.
[4] 杨敏,黄俊杰,王浩,等. 载货车车架的灵敏度分析及结构优化[J]. 合肥工业大学学报:自然科学版,2011, 34(7): 993-996.
YANG Min, HUANG Jun-jie, WANG Hao, et al. Sensitivity analysis and structural optimization of truck frame [J]. Journal of Hefei University of Technology: Natural  Science Edition, 2011,34(7): 993-996.
[5] 于兰峰,王金诺.基于遗传算法和神经网络的塔机结构动态优化设计[J].中国机械工程,2008, 19(1): 61-63.
YU Lan-feng, WANG Jin-nuo. Dynamic optimum design of tower crane based on neural networks and genetic algorithms [J]. China Mechanical Engineering, 2008, 19(1): 61-63.
[6] 郑艳平,朱厚军.具有横向裂纹轴的弯曲刚度研究[J].船舶工程,2006, 28(5): 10-13.
ZHENG Yan-ping, ZHU Hou-jun. Study on flexural stiffness of a shaft with transverse crack [J]. Ship Engineering, 2006, 28(5): 10-13.
[7] 陈浩,李军,唐宇,等. 基于动态罚函数遗传算法的电磁探测卫星多星规划方法[J].国防科技大学学报,2009, 31(2): 44-50.
CHEN Hao, LI Jun, TANG Yu, et al. An approach for electromagnetic detection satellites scheduling based on genetic algorithm with dynamic punish function [J]. Journal of National University of Defense Technology, 2009, 31(2): 44-50.
[8] ADELMAN H M, HAFTKA R T. Sensitivity analysis of discrete structural systems[J]. AIAA Journal, 1986, 24(5): 823-832.
[9] 王安麟,刘广军,姜涛.广义机械优化设计[M].武汉:华中科技大学,2008: 63-83.
[10] 于兰峰,王金诺.塔式起重机结构系统动态优化设计[J].西南交通大学学报,2007, 42(2): 206-210.
YU Lan-feng,WANG Jin-nuo. Dynamic optimum design of tower crane structures [J]. Journal of Southwest JiaoTong University, 2007, 42(2): 206-210.
[11]孙学伟,徐秉业. 起重机计算实例[M].北京: 中国铁道出版社,1985: 362-378.
[12]GEN M, CHENG R W. Genetic algorithms and engineering optimization [M]. New York: Wiley, 2000.
[13]李耀明,徐立章,丁为民.基于混合遗传算法的梳脱割台参数优化[J].农业机械学报,2003,34(4): 50-52.
LI Yaoming, XU Li-zhang, DING Wei-min. Parameter optimization of stripping header by a hybrid genetic algorithm [J].Transactions of the Chinese Society for Agricultural Machinery,2003,34 (4): 50-52.
[14]王东华,刘占生,窦唯.基于混合遗传算法的转子系统优化设计[J].振动与冲击,2009,28(5): 88-89.
WANG Dong-hua, LIU Zhan-sheng, DOU Wei. Rotor dynamics optimization based on a hybrid genetic algorithm [J]. Journal of Vibration and Shock, 2009, 28(5): 88-89.
[15]李锋,齐晓慧,李洪梁.基于权重因子的四种模糊控制规则比较[J].计算机仿真,2007, 24(12): 138-140.
LI Feng, QI Xiao-hui, LI Hong-liang.Comparison of fuzzy controller rules based on weight factor [J] . Computer Simulation, 2007, 24(12):138-140.

[1] 赵建军,王毅,杨利斌. 基于时间序列预测的威胁估计方法[J]. J4, 2014, 48(3): 398-403.
[2] 崔光茫, 赵巨峰, 冯华君, 徐之海, 李奇, 陈跃庭. 非均匀介质退化图像快速仿真模型的建立[J]. J4, 2014, 48(2): 303-311.
[3] 张天煜, 冯华君, 徐之海, 李奇, 陈跃庭. 基于强边缘宽度直方图的图像清晰度指标[J]. J4, 2014, 48(2): 312-320.
[4] 刘中, 陈伟海, 吴星明, 邹宇华, 王建华. 基于双目视觉的显著性区域检测[J]. J4, 2014, 48(2): 354-359.
[5] 王相兵,童水光,钟崴,张健. 基于可拓重用的液压挖掘机结构性能方案设计[J]. J4, 2013, 47(11): 1992-2002.
[6] 王进, 陆国栋, 张云龙. 基于数量化一类分析的IGA算法及应用[J]. J4, 2013, 47(10): 1697-1704.
[7] 刘羽, 王国瑾. 以已知曲线为渐进线的可展曲面束的设计[J]. J4, 2013, 47(7): 1246-1252.
[8] 胡根生,鲍文霞,梁栋,张为. 基于SVR和贝叶斯方法的全色与多光谱图像融合[J]. J4, 2013, 47(7): 1258-1266.
[9] 吴金亮, 黄海斌, 刘利刚. 保持纹理细节的无缝图像合成[J]. J4, 2013, 47(6): 951-956.
[10] 陈潇红,王维东. 基于时空联合滤波的高清视频降噪算法[J]. J4, 2013, 47(5): 853-859.
[11] 朱凡,李悦,蒋 凯,叶树明,郑筱祥. 基于偏最小二乘的大鼠初级运动皮层解码[J]. J4, 2013, 47(5): 901-905.
[12] 吴宁, 陈秋晓, 周玲, 万丽. 遥感影像矢量化图形的多层次优化方法[J]. J4, 2013, 47(4): 581-587.
[13] 计瑜,沈继忠,施锦河. 一种基于盲源分离的眼电伪迹自动去除方法[J]. J4, 2013, 47(3): 415-421.
[14] 王翔,丁勇. 基于Gabor滤波器的全参考图像质量评价方法[J]. J4, 2013, 47(3): 422-430.
[15] 刘芳, 孙芸, 杨庚, 林海. 基于粒子群优化算法的社交网络可视化[J]. J4, 2013, 47(1): 37-43.